欧拉函数 O(n)=n(1-1/P1)(1-1/P2)…(1-1/Pn) ,其中P1…Pn为n的质因子,求出来的结果就是题目所求。
不知道为社么这么写时间超限,下面那种方式写就能过。
#include<iostream>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#include <algorithm>
#include<string.h>
#include<queue>
#include<math.h>
#include<set>
#define ll long long
using namespace std;
int main()
{
int t;
cin >> t ;
while(t--)
{
int n,ans;
cin >> n;
ans=n;
for(int i=2;i*i<=n;i++)
{
if(n%i==0)
{//原理:o(n)=n*(1-1/p1)+...+(1-1/pn)p1...pn表示为n的质因子.
ans=ans/i*(i-1);//先除后乘,避免溢出。
while(n%i==0){
n/=i;
}
}
}
if(n>1)ans=ans/n*(n-1);
cout << ans << endl ;
}
return 0;
}
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const LL maxa=1e10+10;
LL euler_deall(LL n){
LL res=n;
for(LL i=2;i*i<=n;i++){
if(n%i==0){
res=res/i*(i-1);
for(;n%i==0;n/=i);
}
}
if(n!=1) res=res/n*(n-1);
return res;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
LL n;
scanf("%lld",&n);
printf("%lld\n",euler_deall(n));
}
}