对于第一组样例,阿福可以第 1 次在第 1 天买入(价格为 5 ),然后在第 2 天卖出(价格为 14 )。第 2 次在第 3 天买入(价格为 -2 ),然后在第 7 天卖出(价格为 17 )。一共获得的利润是 (14 - 5) + (17 - (-2)) = 28
对于第二组样例,阿福可以第 1 次在第 1 天买入(价格为 6 ),然后在第 2 天卖出(价格为 8 )。第 2 次仍然在第 2 天买入,然后在第 2 天卖出。一共获得的利润是 8 - 6 = 2
对于第三组样例,由于价格一直在下跌,阿福可以随便选择一天买入之后迅速卖出。获得的最大利润为 0
问题相当于:一个数组 i<=j<=k<=l 求a[j]-a[i]+a[l]-a[k]的最大值
思路:以某一个数位节点,求出这个数之前的利润最大值和这个数之后的利润最大值
AC代码:
#include<iostream>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#include <algorithm>
#include<string.h>
#include<math.h>
#define llu unsigned long long
using namespace std;
int a[100010],dp1[100010],dp2[100010],maxx[100010],minn[100010];
//dp1数组用来存第一次卖出能赚的钱,dp2存第二次卖出赚的钱
int main()
{
int T;
cin >> T ;
while(T--)
{
int n;
cin >> n;
//long long a[n],dp1[n],dp2[n],maxx[n],minn[n];
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
//cin >> a[i] ;
//cout << "yyy" << endl ;
}
//找此位置前的最低价格
minn[0]=a[0];
dp1[0]=0;
for(int i=1;i<n;i++)
{
minn[i]=min(minn[i-1],a[i]);
dp1[i]=max(dp1[i-1],a[i]-minn[i]);//求出以这个数为节点的第一次卖出的最大利润
}
//找此位置后的最高价格
maxx[n-1]=a[n-1];
dp2[n-1]=0;
for(int i=n-2;i>=0;i--)
{
maxx[i]=max(maxx[i+1],a[i]);
dp2[i]=max(dp2[i+1],maxx[i]-a[i]);//求出以这个数为节点的第二次卖出的最大利润
}
int ans=0;
for(int i=0;i<n;i++)
{
ans=max(ans,dp1[i]+dp2[i]);
}
//cout << ans << endl ;
printf("%d\n",ans);
}
return 0;
}