《机器学习入门到精通》
文章平均质量分 91
零基础快速入门人工智能,人工智能经典算法+案例分析
士别三日wyx
2022年北京冬奥会网络安全中国代表队,CSDN Top100,持续分享网络安全干货,商务合作+V shibiesanriwyx
展开
-
《机器学习核心算法》分类算法 - 朴素贝叶斯 MultinomialNB
朴素贝叶斯法(Naive Bayes model 简称 NBM )是基于「贝叶斯定理」与「特征条件独立假设」的分类方法。原创 2023-09-14 08:32:16 · 10169 阅读 · 6 评论 -
《机器学习核心技术》分类算法 - 决策树
决策树是一种「二叉树形式」的预测模型,每个「节点」对应一个「判断条件」,「满足」上一个条件才能「进入下一个」判断条件。就比如找对象,第一个条件肯定是长得帅,长得帅的才考虑下一个条件;长得不帅就直接pass,不往下考虑了。原创 2023-08-28 07:42:28 · 13735 阅读 · 119 评论 -
【机器学习】sklearn数据集的使用,数据集的获取和划分
机器学习是人工智能的一个实现途径,可以从「数据」中自动分析获得「模型」,并利用模型对未知数据进行「预测」。简单来说就是从历史数据中总结规律,用来解决新出现的问题。从数据中总结规律,需要提供一个「数据集」,数据集由「特征值」和「目标值」两部分组成。原创 2023-08-17 09:14:34 · 12361 阅读 · 6 评论 -
【机器学习】分类算法 - 模型选择与调优GridSearchCV(网格搜索)
网格搜索也叫超「参数搜索」,比如K-近邻算法的K值需要手动指定参数,这种参数就叫超参数。网格搜索通过预设几组超参数组合,每组超参数都用交叉验证进行评估,从而选出「最优」的参数组合来建立模型。sklearn 模块 GridSearchCV 很好的实现了网格搜索,它可以自动调参,只要把参数输进去,就能给出最优的结果和参数。原创 2023-07-28 06:27:13 · 18591 阅读 · 4 评论 -
【机器学习】特征降维 - 主成分分析PCA
主成分分析(Principal Component Analysis,PCA), 是一种「统计」方法。通过正交变换将一组可能存在「相关性」的变量转换为一组「线性不相关」的变量,转换后的这组变量叫「主成分」。原创 2023-07-20 06:45:29 · 13423 阅读 · 8 评论 -
【机器学习】特征降维 - 方差选择法VarianceThreshold
提取的特征当中,有一些相关(相似)的「冗余特征」,这种特征是没有必要统计的,我们需要「减少」相关的特征,留下不相关的特征。也就是「特征降维」。特征降维的方式有很多,这里使用其中的一种:方差选择法(低方差过滤)原创 2023-07-10 08:31:04 · 12506 阅读 · 3 评论 -
【机器学习】特征工程 - 文本特征提取TfidfVectorizer
对「文本」进行特征提取时,一般会用「单词」作为特征,即特征词。TfidfVectorizer会计算特征词的「权重」,帮我们发现哪个词是最重要的。原创 2023-07-06 09:40:45 · 11446 阅读 · 3 评论 -
【机器学习】特征工程 - 文本特征提取CountVectorizer
对「文本」进行特征提取时,一般会用「单词」作为特征,即特征词。CountVectorizer会计算特征词出现的「次数」,帮我们发现哪个词是最「重要」的。一、特征提取API二、提取特征三、转换成数组四、特征名字五、停用词六、返回原始数据原创 2023-07-03 06:41:28 · 11457 阅读 · 97 评论 -
【机器学习】特征工程 - 字典特征提取
特征工程就是从「原始数据」中提取「特征」,以供「算法」和「模型」使用。简单来说就是将任意数据(比如文本和图像)转换为可用于机器学习的数字特征。原创 2023-06-27 06:43:20 · 14188 阅读 · 72 评论 -
【机器学习】数据预处理 - 归一化和标准化
处理数据之前,通常会使用一些转换函数将特征数据转换成更适合算法模型的特征数据。这个过程,也叫数据预处理。归一化是常用的预处理方式之一,就是把数据转换到 0~1 之间。原创 2023-06-30 09:33:19 · 16152 阅读 · 74 评论