「作者主页」:士别三日wyx
「作者简介」:CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者
「推荐专栏」:对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》
对「文本」进行特征提取时,一般会用「单词」作为特征,即特征词。
CountVectorizer会计算特征词出现的「次数」,帮我们发现哪个词是最「重要」的。
一、特征提取API
sklearn.feature_extraction 是用来提取特征的API。
sklearn.feature_extraction.text.CountVectorizer( stop_words=[…] )
- fit_transform( data ):接收数据(文本或包含文本字符串的可迭代对象),返回提取的特征
- vector.inverse_transform( new_data ):将提取的特征,转换成之前的数据
- get_feature_names_out():获取(特征)单词列表
参数:
- stop_words:停用词,数组类型,指定的停用词不再作为特征词。
二、提取特征
我们准备一组原始数据,然后「提取特征」
from sklearn import feature_extraction
# 原始数据(字典)
old_data = [
"I am your mather !",
"I am your father !"]
# 初始化
vector = feature_extraction.text.CountVectorizer()
# 转换数据
new_data = vector.fit_transform(old_data)
print(new_data)
输出:
(0, 0) 1
(0, 3) 1
(0, 2) 1
(1, 0) 1
(1, 3) 1
(1, 1) 1
返回的提取的特征默认是「sparse矩阵」,我们用type打印一下返回值的类型。
# 转换数据
new_data = vector.fit_transform(old_data)
print(type(new_data))
输出:
<class 'scipy.sparse._csr.csr_matrix'>
这种格式不利于我们观察分析,接下来,我们把sparse矩阵转换成数组格式。
三、转换成数组
sparse矩阵内置的 toarray() 方法 ,可以把结果转换成「二维数组」。
from sklearn import feature_extraction
# 原始数据(字典)
old_data = [
"I am your mather !",
"I am your father !"]
# 初始化
vector = feature_extraction.text.CountVectorizer()
# 转换数据
new_data = vector.fit_transform(old_data)
print(new_data.toarray())
输出:
[[1 0 1 1]
[1 1 0 1]]
这样的格式友好一些,但这些特征是什么意思呢?我们可以通过特征名字来分析。
四、特征名字
get_feature_names_out() 方法可以获取「特征名字」。
from sklearn import feature_extraction
# 原始数据(字典)
old_data = [
"I am your mather !",
"I am your father !"]
# 初始化
vector = feature_extraction.text.CountVectorizer()
# 转换数据
new_data = vector.fit_transform(old_data)
print(new_data.toarray())
print(vector.get_feature_names_out())
输出:
[[1 0 1 1]
[1 1 0 1]]
['am' 'father' 'mather' 'your']
从特征名字我们可以发现,原始数据中出现的每个「单词」,都被当做一个「特征词」。
需要注意的是,「标点符号」和「字母」默认不统计,不作为特征词,因为没什么意义。
提取的特征数组中:每一行(也就是每个数组)对应一个「样本」,每一列(也就是数组的每一个值)对应一个特征词。
用数字表示特征词出现的次数。
比如第一个数组([1 0 1 1])对应第一个样本(“I am your mather !”);
数组中第一位时1,意思就是样本里 ‘am’ 这个词出现了1次;
数组中第二位是0,意思就是样本里 ‘father’ 这个词出现了0次;
为了方便观察,我们在第一个样本字符串里添加「重复」的单词:
from sklearn import feature_extraction
# 原始数据(字典)
old_data = [
"I am your mather mather!",
"I am your father !"]
# 初始化
vector = feature_extraction.text.CountVectorizer()
# 转换数据
new_data = vector.fit_transform(old_data)
print(new_data.toarray())
print(vector.get_feature_names_out())
输出:
[[1 0 2 1]
[1 1 0 1]]
['am' 'father' 'mather' 'your']
可以看到特征数组里有了一个数字2,意思就是样本中,‘mather’ 这个词出现了2次。
五、停用词
CountVectorizer() 的 stop_words 参数可以指定「停用词」。
停用词的意思就是,不被算作特征词的单词,通常用于那些使用很少或没有统计意义的词。
这里我们指定两个停用词,观察一下提取的特征词有什么变化:
# 原始数据(字典)
old_data = [
"I am your mather mather!",
"I am your father !"]
# 初始化
vector = feature_extraction.text.CountVectorizer(stop_words=['am', 'your'])
# 转换数据
new_data = vector.fit_transform(old_data)
print(vector.get_feature_names_out())
输出:
['father' 'mather']
这里可以看到,我指定的 am,your 这两个停用词,不再作为特征词。
六、返回原始数据
vector.inverse_transform() 方法可以将提取的特征转回原始数据:
from sklearn import feature_extraction
# 原始数据(字典)
old_data = [
"I am your mather mather!",
"I am your father !"]
# 初始化
vector = feature_extraction.text.CountVectorizer()
# 转换数据
new_data = vector.fit_transform(old_data)
# 提取的特征数组
print(new_data.toarray())
print('分割线 ---')
# 转回原始数据
print(vector.inverse_transform(new_data))
输出:
[[1 0 2 1]
[1 1 0 1]]
分割线 ---
[array(['am', 'your', 'mather'], dtype='<U6'), array(['am', 'your', 'father'], dtype='<U6')]