Liskov替换原则(LSP)

Liskov替换原则(LSP):

子类型必须能够替换他们的基类。

我们来看一个以微妙的方式违反LSP的例子:正方形是长方形的子类么?

class Rectangle {
    public:
void Square::SetWidth (double w) {
    Rectangle::SetWidth (w);
    
}

假设这个应用程序运行得很好,并被安装在很多地方。但是我们不得不承认任何需求都是变化的。用户某天要求添加操作正方形的功能。

我们所说的继承是IS-A的关系。从一般意义上讲:正方形是长方形的一种。因此让正方形继承与长方形似乎很合理。

但是很快我们就发现了问题:正方形的长和宽是一样的。所以,Rectangle的SetWidth和SetHeight函数对于Square类就不适合了。

但是我们可以通过覆写这两个函数来修正这个问题:

void Square::SetWidth (double w) {
    Rectangle::SetWidth(w);
    Rectangle::SetHeight(w);
}
void Square::SetHeidth (double w) {
    Rectangle::SetWidth(w);
    Rectangle::SetHeight(w);
}
现在,当设置Square对象的长或者宽时,它们对应的宽或长都会响应的变化。这样新的Square能够很好的运行。

但是考虑下面的情况:

void g(Rectangle& r) {
    r.SetWidth(5);
    r.SetHeight(4);
    assert(r.Area() == 20);
}
这个函数如果传递进来的是Square对象,就会发生断言错误。


所以真正的问题是:Rectangle类有一个不变性:长和宽可以独立变化,但是Square从Rectangle派生后,Square的编写者违反了Rectangle的不变性!

LSP让我们得出了一个非常重要的结论:一个模型,如果孤立地看,并不具有真正意义上的有效性。

那为什么Square和Rectangle这个看起来很合理的模型会有问题呢?难道它们之间不存在IS-A的关系吗?

相对于哪些不是g函数的编写者而言,正方形可以是长方形。

相对于g函数的编写者,Square绝对不是Rectangle。

因此,我们判断IS-A的关系时,不是孤立的看,而是以相对的方式,从行为上来看的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值