图为关系型数据表记录的两条用户信息,用户的属性作为表的列,每条用户信息作为行。
如果将其用哈希类型存储,如图所示。
相比于使用字符串序列化缓存用户信息,哈希类型变得更加直观,并且在更新操作上会更加便捷。可以将每个用户的id定义为键后缀,多对field-value对应每个用户的属性,类似如下伪代码:
UserInfo getUserInfo(long id){
// 用户id作为key后缀
userRedisKey = "user:info:" + id;
// 使用hgetall获取所有用户信息映射关系
userInfoMap = redis.hgetAll(userRedisKey);
UserInfo userInfo;
if (userInfoMap != null) {
// 将映射关系转换为UserInfo
userInfo = transferMapToUserInfo(userInfoMap);
} else {
// 从MySQL中获取用户信息
userInfo = mysql.get(id);
// 将userInfo变为映射关系使用hmset保存到Redis中
redis.hmset(userRedisKey, transferUserInfoToMap(userInfo));
// 添加过期时间
redis.expire(userRedisKey, 3600);
}
return userInfo;
}
但是需要注意的是哈希类型和关系型数据库有两点不同之处:
·哈希类型是稀疏的,而关系型数据库是完全结构化的,例如哈希类型每个键可以有不同的field,而关系型数据库一旦添加新的列,所有行都要为其设置值(即使为NULL)。
·关系型数据库可以做复杂的关系查询,而Redis去模拟关系型复杂查询开发困难,维护成本高。
开发人员需要将两者的特点搞清楚,才能在适合的场景使用适合的技术。到目前为止,我们已经能够用三种方法缓存用户信息,下面给出三种方案的实现方法和优缺点分析。
1)原生字符串类型:每个属性一个键。
set user:1:name tom
set user:1:age 23
set user:1:city beijing
优点:简单直观,每个属性都支持更新操作。
缺点:占用过多的键,内存占用量较大,同时用户信息内聚性比较差,所以此种方案一般不会在生产环境使用。
2)序列化字符串类型:将用户信息序列化后用一个键保存。
set user:1 serialize(userInfo)
优点:简化编程,如果合理的使用序列化可以提高内存的使用效率。
缺点:序列化和反序列化有一定的开销,同时每次更新属性都需要把全部数据取出进行反序列化,更新后再序列化到Redis中。
3)哈希类型:每个用户属性使用一对field-value,但是只用一个键保存。
hmset user:1 name tom age 23 city beijing
优点:简单直观,如果使用合理可以减少内存空间的使用。
缺点:要控制哈希在ziplist和hashtable两种内部编码的转换,hashtable会消耗更多内存。