原来是可以这样写博客的吼

wangzimengs

挺好玩的

二叉树的深度

输入一个二叉树的根节点,求该树的深度。从根节点到叶子节点依次经过的节点(含根、叶节点)形成树的一条路径,最长路径的长度包含的节点数为为树的深度,即二叉树节点的层数。

二叉树的节点定义: 
假定二叉树的节点定义如下:

struct BinaryTreeNode{
    int m_value;
    BinaryTreeNode* m_pLeft;
    BinaryTreeNode* m_pRight;
};
  • 1
  • 2
  • 3
  • 4
  • 5

二叉树示例: 
以图深度为四的二叉树为例,其先先根遍历序列为:{1,2,4,5,7,3,6},中根遍历序列为:{4,2,7,5,1,3,6},根据先根序列和中根序列即可构造唯一的二叉树,构造的具体实现可参见:二叉树的构造与遍历。很显然,该二叉树有4层节点,所以其高度是4。

这里写图片描述

求解思路: 
根据题目的定义,我们可以用先根次序来遍历二叉树中所有根节点到叶节点的路径,来得到最长的路径就是二叉树的高度。但是这样的代码量较为冗长,我们可以采用递归的方式解决。

我们可以从根节点即左右子树来理解二叉树的深度。对于任意一棵非空二叉树,有如下四种情况:

(1)如果一颗树只有一个节点,它的深度是1;

(2)如果根节点只有左子树而没有右子树,那么二叉树的深度应该是其左子树的深度加1;

(3)如果根节点只有右子树而没有左子树,那么二叉树的深度应该是其右树的深度加1;

(4)如果根节点既有左子树又有右子树,那么二叉树的深度应该是其左右子树的深度较大值加1;

实现代码:

int treeDepth(BinaryTreeNode* root){
    if(root==NULL){
        return 0;
    }
    int nLeft=treeDepth(root->m_pLeft);
    int nRight=treeDepth(root->m_pRight);
    return nLeft>nRight?nLeft+1:nRight+1;
}

2 二叉树的宽度

题目: 
给定一颗二叉树,求二叉树的宽度。

宽度的定义: 
二叉树的宽度定义为具有最多结点数的层中包含的结点数。

这里写图片描述

比如上图中,第1层有1个节点, 第2层有2个节点, 第3层有4个节点, 第4层有1个节点,可知,第3层的结点数最多,所以这棵二叉树的宽度就是4。

求解思路: 
这里需要用到二叉树的层次遍历,即广度优先周游。在层次遍历的过程中,通过读取队列中保留的上一层的节点数来记录每层的节点数,以获取所有层中最大的节点数。关于二叉树的广度优先周游,参考:二叉树的构造与遍历

具体实现:

//求二叉树的宽度  
int treeWidth(BinaryTreeNode *pRoot){  
    if (pRoot == NULL)
        return 0;  

    int nLastLevelWidth = 0;//记录上一层的宽度  
    int nCurLevelWidth = 0;//记录当前层的宽度  

    queue<BinaryTreeNode*> myQueue;  
    myQueue.push(pRoot);//将根节点入队列  
    int nWidth = 1;//二叉树的宽度  
    nLastLevelWidth = 1;      
    BinaryTreeNode *pCur = NULL;  

    while (!myQueue.empty())//队列不空  
    {  
        while (nLastLevelWidth!= 0){  
            pCur = myQueue.front();//取出队列头元素  
            myQueue.pop();//将队列头元素出对  

            if (pCur->m_pLeft != NULL)  
                myQueue.push(pCur->m_pLeft);   

            if (pCur->m_pRight != NULL)  
                myQueue.push(pCur->m_pRight); 
            nLastLevelWidth--;  
        }  

        nCurLevelWidth = myQueue.size();  
        nWidth = nCurLevelWidth > nWidth ? nCurLevelWidth : nWidth;  
        nLastLevelWidth = nCurLevelWidth;  
    }  
    return nWidth;  
}  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值