看看数据范围,woc,什么鬼,让我在初中第一眼看见的时候惊呆了,然后留下了阴影。现在才补完。
其实也不算太难。
首先,我最先先到的就是在一个模大质数的意义下解,复杂度就成O(mn)的了,再用两个比较大的质数同时做,如果这样都wa的话就没办法了(几率太小)。不过,这样是过不了最后两个点的,怕是这样只能O(wys)了233。
但是,我们可以改进一下思路,先选取一个比较小的质数p,算它的答案,假设为x,那么(x+p)也是一个解。显然,这样的解不超过n个,我们再用一个比较大的数在这些解里面判断是否为真正的解就好了。
#include<bits/stdc++.h>
#define LL long long
using namespace std;
const LL p[]={67891,1000000207};
char s[10005];
LL a[10][105];
int tot;
LL n,m,st,ed,x;
bool flg,E[1000005];
inline void write(int x)
{
if(x==0)putchar('0');
else
{
char buf[15];
int len=0;
if(x<0)putchar('-'),x=-x;
while(x)buf[++len]=x%10+'0',x/=10;
for(int i=len;i>=1;i--)putchar(buf[i]);
}
putchar('\n');
}
bool check(LL x,int k)
{
//for(int k=0;k<5;k++)
//{
LL tmp=1,sum=0;
for(int i=0;i<=n;i++)
{
sum=(sum+tmp*a[k][i])%p[k];
tmp=(tmp*x)%p[k];
}
if(sum!=0)return false;
//}
return true;
}
int main()
{
freopen("in.txt","r",stdin);
cin>>n>>m;
for(int i=0;i<=n;i++)
{
flg=false;
scanf("%s\n",s);st=0,ed=strlen(s);
if(s[0]=='-')st++,flg=true;
for(int k=0;k<2;k++)
{
x=0;
for(int j=st;j<ed;j++)
{
x=x*10+s[j]-'0';
x=x%p[k];
}
if(flg)a[k][i]=(p[k]-x);
else a[k][i]=x;
}
}
for(int i=1;i<=p[0];i++)
if(check(i,0))
for(int j=i;j<=m;j+=p[0])
if(check(j,1))E[j]=true,tot++;
write(tot);
for(int i=1;i<=m;i++)if(E[i])write(i);
return 0;
}