标题: 马虎的算式
小明是个急性子,上小学的时候经常把老师写在黑板上的题目抄错了。
有一次,老师出的题目是:36 x 495 = ?
他却给抄成了:396 x 45 = ?
但结果却很戏剧性,他的答案竟然是对的!!
因为 36 * 495 = 396 * 45 = 17820
类似这样的巧合情况可能还有很多,比如:27 * 594 = 297 * 54
假设 a b c d e 代表1~9不同的5个数字(注意是各不相同的数字,且不含0)
能满足形如: ab * cde = adb * ce 这样的算式一共有多少种呢?
请你利用计算机的优势寻找所有的可能,并回答不同算式的种类数。
满足乘法交换律的算式计为不同的种类,所以答案肯定是个偶数。
答案直接通过浏览器提交。
注意:只提交一个表示最终统计种类数的数字,不要提交解答过程或其它多余的内容。
解法1:
import java.util.ArrayList;
import java.util.List;
public class 马虎的算式 {
static int count = 0;
public static void check(List<Integer> lis){
int a = lis.get(0);
int b = lis.get(1);
int c = lis.get(2);
int d = lis.get(3);
int e = lis.get(4);
// ab * cde = adb * ce
int l = (a*10+b) *(c*100+d*10+e);
int r = (a*100+d*10+b)*(c*10+e);
if(l==r){
count++;
}
}
// 在1~9里 的5个数全排列
public static void f(List<Integer> lis,int n){
if(n<=0){
check(lis);
return ;
}
for(int i=1;i<=9;i++){
if(!lis.contains(i)){
lis.set(lis.size()-n,i);
}else{
continue;
}
f(lis,n-1);
lis.set(lis.size()-n,0);
}
}
public static void main(String[] args) {
int n = 5;
List<Integer> lis = new ArrayList<Integer>();
for(int i=0;i<n;i++){
lis.add(0); // 初始化为全0
}
f(lis,n); // 在1~9里 的5个数全排列
System.out.println(count);
}
}
解法2
public class 马虎的算是2 {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
int count=0;
for(int a=1;a<10;a++)
{
for(int b=1;b<10;b++)
{
if(a==b)continue;
for(int c=1;c<10;c++)
{
if(a==c||b==c)continue;
for(int d=1;d<10;d++)
{
if(a==d||b==d||c==d)continue;
for(int e=1;e<10;e++)
{
if(a==e||b==e||c==e||d==e)continue;
int a1 = a*10+b;
int b1 = c*100+d*10+e;
int a2 = a*100+d*10+b;
int b2 = c*10+e;
if(a1*b1 == a2*b2)count++;
}
}
}
}
}
System.out.println(count);
}
}
两种解法其实说到底都是穷举法,这是在竞赛中常见的算法考点