问题简述
给你一个单链表的头节点 head ,请你判断该链表是否为回文链表。如果是,返回 true ;否则,返回 false 。
示例 1:
输入:head = [1,2,2,1]
输出:true
示例 2:
输入:head = [1,2]
输出:false
提示:
链表中节点数目在范围[1, 10⁵] 内
0 <= Node.val <= 9
进阶:你能否用 O(n) 时间复杂度和 O(1) 空间复杂度解决此题?
思路分析
由于要求空间复杂度为 O ( 1 ) O(1) O(1),所以不能使用辅助数组存储节点值方便同时从首尾两端向中间遍历数组判断是否为回文。于是想到反转数组的方式,但又不能使用额外空间新建反转的数组,因此我们只能先反转半截链表用于与另外半截链表比对节点值是否一致,之后再反转已反转的半截链表并与另外半截链表链接,以还原为原链表。(注意,随便反转前半截链表或者后半截链表都可以)
为了找到链表中间节点,可以遍历两次链表,第一次遍历得到链表的长度 l l l,第二次遍历到 l / 2 l/2 l/2 的位置。还有个聪明的办法,那就是使用快慢指针。一次遍历中,快指针每个迭代移动2个节点,慢指针每个迭代移动1个节点。这样当快指针移动到链表末尾节点时:如果节点个数是奇数,快指针指向链表末尾节点,慢指针刚好移动到中间节点;如果节点个数是偶数,快指针指向链表末尾节点的下一个节点为空,慢指针刚好移动到中间两个节点的右边那个节点。
还有一个改进点。如果我们反转前半截链表,则可以少执行一次遍历,在使用快慢指针找中间位置节点时就可以在移动指针的过程中顺便对前半截链表实现逐个节点的反转。
代码示例
class Solution:
def isPalindrome(self, head):
pre, slow, fast = None, head, head
while fast and fast.next:
fast = fast.next.next # 注意要在反转slow节点之前移动fast,否则第一次移动fast时会受slow反转的影响。
nxt = slow.next
slow.next = pre
pre = slow
slow = nxt
reversed_left_head = pre
right_head = slow if not fast else slow.next
while reversed_left_head and right_head:
if reversed_left_head.val != right_head.val:
return False
right_head = right_head.next
reversed_left_head = reversed_left_head.next
return True
算法复杂度
时间复杂度
O
(
n
)
O(n)
O(n)
空间复杂度
O
(
1
)
O(1)
O(1)