假设检验到底是什么?

假设检验是什么?

百度百科-定义假设检验 (hypothesis testing)又称统计假设检验,是用来判断样本与样本样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。显著性检验 是假设检验中最常用的一种方法,也是一种最基本的统计推断形式,其基本原理是先对总体的特征做出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受做出推断。常用的假设检验方法有 Z检验、t检验、卡方检验、F检验 等。

为什么需要假设检验?

当我们需要对一个总体数据在某数据指标上的假设进行验证,穷举抽样来证明其正确是不现实的。但我们可以通过部分样本数据,使用统计学手段即假设检验的方法,对在样本上的实验的统计量和对在总体的假设下的统计量进行对比从而对假设进行检验。(区别于参数估计,参数估计是以样本的统计量来估计总体,详见本篇附注。)
如果在样本上的实验的统计量与总体的假设下的统计量之间的差别具有了显著性差异,那么可以说这个差异是两个不同总体的本质差异,否则认为是同一总体的抽样误差。

假设检验的基本思想

对总体数据,定义一个待验证的假设记为H1,对其样本数据,定义与H1相反的假设记为H0。先假定H0成立,则可以在该样本数据上计算其发生的概率,若概率特别小,则说明H0假设不成立。那么相对的,H1假设成立,验证了H1为真。
其本质为:小概率反证法

——“We can not reject the null hypothesis.”

如果样本观察值导致了“小概率事件”发生,就应拒绝假设H0,否则应接受假设H0。这是基于“小概率事件在一次实验中几乎不可能发生”这样一个人们在实践中广泛采用的原则。因此,要支持一个假设H1,可以针对其相反假设H0通过一次实验中小概率事件的发生来否定H0。“小概率事件”的概率越小,否定原假设H0就越有说服力,常记这个概率值为α(0<α<1),称为检验的显著性水平(significant level)。

关键词释义:

H1:备择假设,是研究者想收集证据予以支持的假设。一般为对总体数据需要验证的某一假设,即验证的目标。
H0:零假设,又称原假设,是研究者想收集证据予以推翻的假设。一般设立在样本数据上,设立一个与备择假设相反的假设(对立假设,alternative hypothesis),用于假设检验。即类似反证法里的先给出一个相反的论点。
显著性水平(significant level):由于统计学中有随机性参与的数学计算,因此区别与代数中的“等于”,用显著性水平来划分属于“等于”的差距范围。
显著性差异(significant difference):当数据之间具有了显著性差异,就说明参与比对的数据不是来自于同一总体(Population),而是来自于具有差异的两个不同总体,这种差异可能因参与比对的数据是来自不同实验对象的,比如一些一般能力测验中,大学学历被试组的成绩与小学学历被试组会有显著性差异。也可能来自于实验处理对实验对象造成了根本性状改变,因而前测后测的数据会有显著性差异。常用 P>0.05 表示差异性不显著;0.01<P<0.05 表示差异性显著;P<0.01表示差异性极显著。
第一类错误:原假设为真,但我们由于“等于”的差距范围选择的过于严苛,而拒绝了原假设。即「拒绝了一个真的假设」,可直接用显著性水平alpha来表示,alpha = P(拒绝H0|H0为真)。
第二类错误:原假设为假,但我们由于“等于”的差距范围选择的过于宽松,而支持了原假设。即「支持了一个假的假设」,由 (1-显著性水平alpha) 来表示,记为beta,beta = 1-alpha = 1-P(拒绝H0|H0为真) = P(支持H0|H0为假)。
检验统计量:检验统计量是根据样本观测结果计算得到并据以对原假设和备择假设做出决策的某个样本统计量。它实际上是对总体参数的点估计量,但点估计量不能直接作为检验的统计量,只有将其标准化后,才能用于度量它与原假设的参数值之间的差异程度。常用统计量有均值、方差、协方差、相关系数;常用的检验统计量有t统计量、Z统计量等。
P值(P-value)

假设检验的实操步骤

转载自知乎

附注:

假设检验和参数估计的区别

参数估计分为点估计与区间估计。先介绍定义如下:

点估计与区间估计是抽样推断的两种方法:
【点估计】是在抽样推断中不考虑抽样误差,直接以抽样指标代替全体指标的一种推断方法。因为个别样本的抽样指标不等于全体指标,所以,用抽样指标直接代替全体指标,不可避免的会有误差,但不进行考虑
【区间估计】是抽样推断中根据抽样指标抽样误差去估计全体指标的可能范围的一种推断方法。在从抽样指标推断全体指标时,用一定概率保证误差不超出某一给定范围

参数估计:基于对某个统计量的参数值的推断,通过在样本数据上计算其参数值(或其位于某个区间)的概率来估计在总体数据上该统计量的参数值(或其可能范围)。这个概率称为「置信水平=1-alpha」。
假设检验:基于对某个假设正确与否的推断,通过计算对立假设即原假设为真的情况下在样本数据上计算的统计量为假的概率,来推断得出接受/拒绝原假设的结果。这个概率称为「显著性水平 = alpha」。

<think>好的,用户之前问过关于模型选择的问题,我提供了R代码和步骤,但没有详细解释如何根据检验的p值选择模型。现在用户指出这一点,需要更清晰的解释。 首先,我需要回顾之前的回答,确认确实在模型检验部分没有明确说明如何解读p值来选择模型。之前的回答提到了F检验、Hausman检验和似然比检验,但可能用户对统计检验不熟悉,所以需要更详细的指导。 接下来,我需要分解每个检验的目的和如何根据p值做决定。比如,F检验用于比较混合和固定效应模型,Hausman检验比较固定效应和随机效应,而似然比检验可能用于随机效应和双固定效应。每个检验的原假设是什么,p值小于显著性水平(如0.05)时的结论是什么。 同时,用户可能有不同的数据情况,比如面板数据是否平衡,是否存在个体或时间效应,是否需要考虑异方差等。需要提醒用户这些因素可能影响模型选择,建议根据检验结果结合数据特征和理论依据综合判断。 还要考虑用户可能的背景,他们可能是经济学或社会科学领域的研究者,对统计概念有一定了解,但需要明确的操作步骤。因此,解释应避免过于技术化,用简单明了的语言,结合例子,比如假设检验结果的具体数值,说明如何解读。 另外,用户可能在模型选择过程中遇到其他问题,比如多重共线性或异方差,需要补充相关建议,如检查VIF或使用稳健标准误,但主要焦点是解释p值的解读。 最后,确保回答结构清晰,分点说明每个检验的目的、原假设、p值意义和模型选择建议。可能还需要总结一个步骤指南,帮助用户逐步进行模型选择。</think>--- ### **模型检验的 $p$ 值解读与模型选择规则** 以下分步骤说明 **如何通过检验 $p$ 值选择模型**,并解释背后的逻辑: --- ### **1. F检验(混合回归 vs. 固定效应)** - **目的**:检验是否应该选择个体固定效应(FE)模型而非混合回归模型。 - **原假设 ($H_0$)**:个体效应不显著(即所有个体截距项相同,选择混合回归)。 - **备择假设 ($H_1$)**:个体效应显著(选择固定效应模型)。 - **判断规则**: - **若 $p < 0.05$**:拒绝原假设,选择 **固定效应模型(FE)**。 - **若 $p > 0.05$**:接受原假设,选择 **混合回归模型**。 - **示例代码**: ```r pFtest(fe_ind, pooled) # 输出 p 值 ``` --- ### **2. Hausman检验(固定效应 vs. 随机效应)** - **目的**:检验选择固定效应(FE)还是随机效应(RE)模型。 - **原假设 ($H_0$)**:个体效应与解释变量无关(选择随机效应更高效)。 - **备择假设 ($H_1$)**:个体效应与解释变量相关(选择固定效应更一致)。 - **判断规则**: - **若 $p < 0.05$**:拒绝原假设,选择 **固定效应模型(FE)**。 - **若 $p > 0.05$**:接受原假设,选择 **随机效应模型(RE)**。 - **示例代码**: ```r hausman_test <- phtest(fe_ind, re) print(hausman_test) # 输出 p 值 ``` --- ### **3. 似然比检验(随机效应 vs. 双固定效应)** - **目的**:检验是否需要同时控制个体和时间固定效应(双固定效应)。 - **原假设 ($H_0$)**:时间效应不显著(选择随机效应模型)。 - **备择假设 ($H_1$)**:时间效应显著(选择双固定效应模型)。 - **判断规则**: - **若 $p < 0.05$**:拒绝原假设,选择 **双固定效应模型**。 - **若 $p > 0.05$**:接受原假设,选择 **随机效应模型(RE)**。 - **示例代码**: ```r lr_test <- lrtest(re, fe_twoway) print(lr_test) # 输出 p 值 ``` --- ### **4. 综合决策流程图** 根据检验结果按顺序执行以下步骤: 1. **第一步:F检验** - 若 $p < 0.05$ → 进入 **FE模型**。 - 若 $p > 0.05$ → 使用 **混合回归**(但面板数据通常需考虑个体效应,谨慎选择)。 2. **第二步:Hausman检验** - 若 $p < 0.05$ → 最终选择 **FE模型**。 - 若 $p > 0.05$ → 选择 **RE模型**。 3. **第三步(可选):似然比检验** - 若需控制时间效应 → 比较 **双固定效应 vs. RE**。 - 若 $p < 0.05$ → 选择 **双固定效应**。 --- ### **5. 实际案例分析** 假设你的检验结果如下: 1. **F检验**:$p = 0.01$ → 选择 FE 模型。 2. **Hausman检验**:$p = 0.03$ → 拒绝 RE,坚持 FE。 3. **似然比检验**:$p = 0.10$ → 接受 RE(但已选择 FE,此步可忽略)。 - **最终模型**:个体固定效应模型(FE)。 --- ### **6. 注意事项** 1. **经济意义优先**:即使检验支持某模型,仍需结合变量经济含义判断(如核心变量 `dig` 的符号是否符合理论预期)。 2. **稳健性检验**: - 尝试不同模型(如 **混合回归 + 聚类标准误**)对比结果稳定性。 - 使用 **分样本回归**(如按地区分组)验证核心变量显著性。 3. **报告要求**: - 在论文中需同时报告 **关键检验的 $p$ 值** 和 **模型选择依据**。 - 示例语句: > *“Hausman检验结果显示 $p=0.03$,因此选择固定效应模型以控制个体异质性。”* --- 通过上述步骤,可明确根据 $p$ 值选择适合的模型。若仍有疑问,可提供具体检验结果,我将协助解读!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值