冒泡排序,类似于水中冒泡,往上浮的泡泡会越来越大。每一趟遍历,会将一个最大的数移到序列末尾。
算法步骤
- 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
- 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
- 针对所有的元素重复以上的步骤,除了最后一个;
- 重复步骤1~3,直到排序完成。
动图演示
代码实现
一般写法
private static void sort(int[] arr) {
for (int i = 0; i < arr.length - 1; i++) {
for (int j = 0; j < arr.length - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
优化一
假设我们现在排序ar[]={1,2,3,4,5,6,7,8,10,9}这组数据,按照上面的排序方式,第一趟排序后将10和9交换已经有序,接下来的8趟排序就是多余的,什么也没做。所以我们可以在交换的地方加一个标记,如果那一趟排序没有交换元素,说明这组数据已经有序,不用再继续下去。
private static void sort1(int[] arr) {
for (int i = 0; i < arr.length - 1; i++) {
boolean swagFlag = false;
for (int j = 0; j < arr.length - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
swagFlag = true;
}
}
if (!swagFlag) {
return;
}
}
}
优化二
优化一仅仅适用于连片有序而整体无序的数据(例如:{1,2,3,4,7,6,5})。但是对于前面大部分是无序而后边小半部分有序的数据{1,2,5,7,4,3,6,8,9,10}排序效率也不可观,对于种类型数据,我们可以继续优化。既我们可以记下最后一次交换的位置,后边没有交换,必然是有序的,然后下一次排序从第一个比较到上次记录的位置结束即可。
private static void sort2(int[] arr) {
int left = arr.length - 1;
for (int i = 0; i < arr.length - 1; i++) {
boolean swagFlag = false;
int pos = 0;
for (int j = 0; j < left; j++) {
if (arr[j] > arr[j + 1]) {
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
swagFlag = true;
pos = j;
}
}
if (!swagFlag) {
return;
}
left = pos;
}
}
left=0时,也可以代表一次交换也没发生,因此可以用left>0的片段来代替swagFlag的作用
private static void sort3(int[] arr) {
int left = arr.length - 1;
for (int i = 0; i < arr.length - 1 && left > 0; i++) {
int pos = 0;
for (int j = 0; j < left; j++) {
if (arr[j] > arr[j + 1]) {
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
pos = j;
}
}
left = pos;
}
}
优化三
优化二的效率有很大的提升,还有一种优化方法可以继续提高效率。大致思想就是一次排序可以确定两个值,正向扫描找到最大值交换到最后,反向扫描找到最小值交换到最前面。例如:排序数据{1,2,3,4,5,6,0}
private static void sort4(int[] arr) {
int right = arr.length - 1;
int left = 0;
while (left < right) {
boolean swagFlag = false;
int pos = 0;
for (int j = 0; j < right; j++) {
if (arr[j] > arr[j + 1]) {
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
swagFlag = true;
pos = j;
}
}
System.out.println(Arrays.toString(arr));
right = pos;
if (!swagFlag) {
return;
}
swagFlag = false;
int pos1 = 0;
for (int k = right; k > left; k--) {
if (arr[k] < arr[k - 1]) {
int tmp = arr[k];
arr[k] = arr[k - 1];
arr[k - 1] = tmp;
swagFlag = true;
pos1 = k;
}
}
left = pos1;
System.out.println(Arrays.toString(arr));
if (!swagFlag) {
return;
}
}
}