python数组的一些特殊表示

python中会使用“:”等符号对数组进行简化表示,如

1. x[:,n]

表示一个数组中第一维取所有数据,第二维取下标为n的数据,即取第二维下标为n的所有数据
eg:

x=np.array([[1,1,2],[2,1,3],[3,1,2],[3,3,3],[3,3,2],[1,0,1]])
print("x[:,1]:",x[:,1],"x[:,2]:",x[:,2])

#输出:x3[:,1]: [1 1 1 3 3 0] x3[:,2]: [2 3 2 3 2 1]

2. x[n,:]

表示一个数组中第一维取下标为n的数据,第二维取所有数据,即取第一维下标为n的所有数据
eg:

x=np.array([[1,1,2],[2,1,3],[3,1,2],[3,3,3],[3,3,2],[1,0,1]])
print("x[1,:]:",x[1,:],"x[2,:]:",x[2,:])

#输出:x3[1,:]: [2 1 3] x3[2,:]: [3 1 2]

3. x[m:n]

表示一个数组中第一维中从下标为m到下标为n(不包括n)的所有数据
eg:

x=np.array([[1,1,2],[2,1,3],[3,1,2],[3,3,3],[3,3,2],[1,0,1]])
print(x[1:3])

#输出:[[2 1 3]
# 	   [3 1 2]]

4. x[:,m:n]

表示一个数组中第一维取所有数据,第二维取下标从m到n(不包括n)的数据
eg:

x=np.array([[1,1,2,1],[2,1,3,1],[3,1,2,2],[3,3,3,3],[3,3,2,3],[1,0,1,1]])
print(x[:,1:3])

#输出:[[1 2]
#      [1 3]
#      [1 2]
#      [3 3]
#      [3 2]
#      [0 1]]

5. x[m:n,:]

表示一个数组中第一维取下标从m到n(不包括n)的数据,第二维取所有数据
eg:

x=np.array([[1,1,2,1],[2,1,3,1],[3,1,2,2],[3,3,3,3],[3,3,2,3],[1,0,1,1]])
print(x[1:3,:])

#输出:[[2 1 3 1]
#      [3 1 2 2]]

6.x[m:n:l]

表示一个维度从m取到n(不包括n),步长为l
eg:

x=np.array([1,2,3,4,5])
y=x[1:4:2]
print(y)

#输出: [2,4]

当m缺少时,此时m默认为-1,等效为x[-1:n:l]
eg:

x=np.array([1,2,3,4,5])
y=x[:4:2]
print(y)

# 输出: [1,3]

当n缺少时,若l为非负,n默认为len(x),若l为负,n默认为-len(x)-1
eg:

x=np.array([1,2,3,4,5])
y=x[1::1]
print(y)

#输出: [2,3,4,5]

当l为-1时,表示倒序数位,步长为1,而m,n都缺少时,表示倒数一遍整个数组
eg:

x=np.array([1,2,3,4,5])
y=x[::-1]
print(y)

#输出: [5,4,3,2,1]

# 总结:数组中用‘,’隔离维度,用‘:’表示所有数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值