Spring Cloud(5)分布式链路追踪技术 Sleuth + Zipkin

1.Spring Cloud Sleuth介绍

Spring Cloud Sleuth为Spring Cloud实现了分布式跟踪解决方案。它与 Zipkin 集成能够跟踪微服务中的请求链路信息,把 Sleuth 的数据信 息发送给 Zipkin 进⾏聚合,利⽤ Zipkin 存储并展示数据。

2.相关术语

当下主流的的分布式链路追踪技术/系统所基于的理念都来⾃于Google 的⼀篇论⽂《Dapper, a Large-Scale Distributed Systems Tracing Infrastructure》.

Spring Cloud Sleuth借鉴了Dapper的术语。

  • Trace:服务追踪的追踪单元是从客户发起请求(request)抵达被追踪系统的边界 开始,到被追踪系统向客户返回响应(response)为⽌的过程

  • Trace ID:为了实现请求跟踪,当请求发送到分布式系统的⼊⼝端点时,只需要服 务跟踪框架为该请求创建⼀个唯⼀的跟踪标识Trace ID,同时在分布式系统内部流转 的时候,框架失踪保持该唯⼀标识,直到返回给请求⽅。

⼀个Trace由⼀个或者多个Span组成,每⼀个Span都有⼀个SpanId,Span中会记录 TraceId,同时还有⼀个叫做ParentId,指向了另外⼀个Span的SpanId,表明⽗⼦ 关系,其实本质表达了依赖关系

  • Span ID:为了统计各处理单元的时间延迟,当请求到达各个服务组件时,也是通过 ⼀个唯⼀标识Span ID来标记它的开始,具体过程以及结束。对每⼀个Span来说, 它必须有开始和结束两个节点,通过记录开始Span和结束Span的时间戳,就能统计 出该Span的时间延迟,除了时间戳记录之外,它还可以包含⼀些其他元数据,⽐如 时间名称、请求信息等。

    Span ID:为了统计各处理单元的时间延迟,当请求到达各个服务组件时,也是通过 ⼀个唯⼀标识Span ID来标记它的开始,具体过程以及结束。对每⼀个Span来说, 它必须有开始和结束两个节点,通过记录开始Span和结束Span的时间戳,就能统计 出该Span的时间延迟,除了时间戳记录之外,它还可以包含⼀些其他元数据,⽐如 时间名称、请求信息等。

    • cs:客户端发送(client send) 客户端发起一个请求,表示span开始
    • sr:服务器接收(server received) 服务器接收到客户端的请求并开始处理,sr - cs 的时间为网络延迟
    • ss:服务器发送(server send) 服务器处理完请求准备返回数据给客户端。ss - sr 的时间表示服务器端处理请求花费的时间
    • cr:客户端接收(client received) 客户端接收到处理结果,表示span结束。 cr - cs 的时间表示客户端接收服务端数据的时间

3.Sleuth + Zipkin

3.1 依赖坐标

每⼀个需要被追踪踪迹的微服务⼯程都引⼊依赖坐标

<!--链路追踪-->
<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>
<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-sleuth-zipkin</artifactId>
</dependency>

3.2 Http方式设置Zipkin

sleuth 默认采用 http 通信方式,将数据传给 zipkin 作页面渲染。spring.zipkin.sender.type: web 是默认的Http方式。

spring:
  zipkin:
    base-url: http://127.0.0.1:9411  #zipkin地址
    sender:
      type: web  # 通信方式
# 日志级别      
logging:
  level:
    org.springframework.cloud.sleuth: debug
    org.springframework.web.servlet.DispatcherServlet: debug      

3.3 MQ消息中间件设置Zipkin

​ sleuth 默认采用 http 通信方式,将数据传给 zipkin 作页面渲染,但是 http 传输过程中如果由于不可抗因素导致 http 通信中断,那么此次通信的数据将会丢失。而使用中间件的话,消息队列可以积压千万级别的消息,下次重连之后可以继续消费。

Sleuth支持RabbitMQ, KafkaActiveMQ,使用的时候只需要引入中间件依赖坐标即可:

下面以RabbitMQ 为例配置:

1)添加依赖

<dependency>
    <groupId>org.springframework.amqp</groupId>
    <artifactId>spring-rabbit</artifactId>
</dependency>

2)配置文件

spring:
  zipkin:
    base-url: http://127.0.0.1:9411
    sender:
      type: rabbit   # 通信方式
# 日志级别      
logging:
  level:
    org.springframework.cloud.sleuth: debug
    org.springframework.web.servlet.DispatcherServlet: debug        

4 Zipkin服务构建

下载Zipkin编译好的jar包,下载地址

官方还提供了其他构建方式,详细可以参考:官网地址https://zipkin.io/pages/quickstart.html

下载好以后运行:java -jar zipkin.jar

在这里插入图片描述

访问:http://127.0.0.1:9411/zipkin/
在这里插入图片描述

5 运行结果

ZipKin服务启动以后,访问微服务地址,就可以查看服务调用链路的信息。

在这里插入图片描述

参考文档:

https://docs.spring.io/spring-cloud-sleuth/docs/current/reference/html/getting-started.html#getting-started

https://docs.spring.io/spring-cloud-sleuth/docs/current/reference/html/howto.html#howto

https://zipkin.io/pages/quickstart.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

warybee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值