手势输入与GPS轨迹生物识别技术解析
1. 阈值聚类与数据集
在进行GPS路线搜索相关的研究中,我们采用Random Swap (RS)算法对阈值进行聚类。该算法进行10,000次迭代,聚类数量为16个。它在K - Means和质心的随机重定位之间交替进行,以此避免陷入局部最优解。通常,该算法在几百次迭代后就能收敛到最终结果,但由于其速度较快,所以使用10,000次迭代以提高找到最优分区的概率。从聚类结果中,我们选取具有最高相似度路线的聚类。
实验使用的是Mopsi20145数据集,它是截至2014年底从Mopsi数据库收集的所有路线的子集。该数据集包含51个用户记录的6,779条路线,这些用户每人至少有10条路线。路线涵盖了多种活动,如步行、骑自行车、徒步旅行、慢跑、定向运动、滑雪、驾驶、乘坐公交、火车或轮船等。大部分路线位于芬兰的约恩苏地区,这是一个非常密集的区域,适合对方法进行压力测试。数据集的统计信息如下表所示:
| Routes | Points | Kilometers | Hours |
| ---- | ---- | ---- | ---- |
| 6,779 | 7,850,387 | 87,851 | 4,504 |
2. 搜索效率分析
搜索效率与数据库大小和网格分辨率成正比。网格的选择取决于在地图上查看目标路线所需的缩放级别,小路线适合使用较高的缩放级别查看。同时,网格也与屏幕大小有关。为了更好地理解这一点,我们计算了Mopsi2014数据集中每条路线的最佳查看缩放级别,即能在屏幕上显示整个路线的最大缩放级别。结果显示,最低缩放级别很少使用,因为处于该缩放级别的路线通常跨越多个国家甚至大洲,在数据集中较为