畅游图论之判断二分图

畅游图论之判断二分图

方法1:BFS

public boolean isBipartite(int[][] graph) {
    int V = graph.length;
    int[] colors = new int[V];
    Arrays.fill(colors, -1);//-1表示未着色
    Queue<Integer> queue = new LinkedList<>();
    for (int i = 0; i < V; i++) {
        if (colors[i] == -1) {//当前点未着色
            queue.offer(i);
            colors[i] = 0;//着色0
            while (!queue.isEmpty()) {
                int u = queue.poll();
                for (int v : graph[u]) {
                    if (colors[v] == colors[u]) return false;
                    if (colors[v] == -1) {
                        colors[v] = 1 - colors[u];//着色u的颜色的相反色 只有两种颜色, 0和1 
                        queue.offer(v);
                    }
                }
            }
        }
    }
    return true;
}
另外一种写法
public boolean isBipartite(int[][] graph) {
    int V = graph.length;
    int[] colors = new int[V];//默认0为未着色
    Queue<Integer> queue = new LinkedList<>();
    for (int i = 0; i < V; i++) {
        if (colors[i] == 0) {//当前点未着色
            queue.offer(i);
            colors[i] = 1;//着色1
            while (!queue.isEmpty()) {
                int u = queue.poll();
                for (int v : graph[u]) {
                    if (colors[v] == colors[u]) return false;
                    if (colors[v] == 0) {
                        colors[v] = -colors[u];//着色u的颜色的相反色 只有两种颜色, -1和1
                        queue.offer(v);
                    }
                }
            }
        }
    }
    return true;
}

方法2:DFS

public boolean isBipartite(int[][] graph) {
    int V = graph.length;
    int[] colors = new int[V];//默认0为未着色
    for (int i = 0; i < V; i++) {
        if (colors[i] == 0 && !helper(graph, colors, i, 1)) return false;
    }
    return true;
}


/**
 * @param graph  图
 * @param colors colors数组
 * @param u      当前要处理的顶点
 * @param c      要为u着色的颜色color
 * @return
 */
private boolean helper(int[][] graph, int[] colors, int u, int c) {
    if (colors[u] != 0) {//当前顶点u没有被着色,要给其安排颜色c,如果符合安排,说明当前的着色方案没问题,反之则不可以
        return colors[u] == c;
    }
    colors[u] = c;//着色
    for (int v : graph[u]) {
        if (!helper(graph, colors, v, -c)) return false;//着色失败,则提前退出
    }
    return true;
}

Reference

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值