自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(70)
  • 收藏
  • 关注

原创 win10+cuda10.0+pytorch安装

简介由于PyTorch在中国大陆的安装包下载十分缓慢,导致很多在线安装方法难以实现。故对Pytorch在windows下的安装方法做一个简单说明,希望能够帮助到更多的朋友。有任何问题,可以联系我。解决方法是:先将安装包下载到本地,再用pip install安装。本机配置系统配置 WindowsAnaconda环境 Python 3.7CUDA内核显卡 NVIDIA Quadro P4...

2020-02-17 08:20:32 36898 29

原创 Matlab里.cu函数转ptx文件常见错误

system(‘nvcc -ptx kernel.cu’);nvcc fatal : Cannot find compiler ‘cl.exe’ in PATH报错“c:\program files\nvidia gpu computing toolkit\cuda\v10.0\include\crt\math_functions.h: warning C4819: 该文件包含不能在当前代码页(936)中表示的字符。请将该文件保存为 Unicode 格式以防止数据丢失 ”...

2022-02-18 16:38:55 437

原创 基于Matlab的GPU加速---for循环处理

Matlab加速

2022-02-17 17:07:51 6769

原创 二维光场表示

1 单色光的表达由于光的频率非常高,在对实际光振动的探测时间间隔内,通常测量到的是在探测时间内经历了大数量周期振动的光强度平均值,时间因子对描述光场的空间分布不起作用。可以用下式对光场进行描述:U~(x,y,z)=U0(x,y,z)exp[jφ(x,y,z)]\widetilde U(x,y,z) =U_{0}(x,y,z)exp[j \varphi(x,y,z)] U(x,y,z)=U0​(x,y,z)exp[jφ(x,y,z)]这是一个与时间无关的复函数,它表征了光波场所存在空间中各点的振幅和相对

2021-05-19 19:43:20 3225

原创 基于Django+MySQL+DBeaver客户端的后端环境配置

本次组队学习为Datawhale组织开展。详见github资料。配置过程中的一些问题,汇总如下:1、初始化数据库通过root用户连接数据库../mysql/bin/mysql -u root -p。在SQL 终端,运行下列SQL语句:-- 创建bluewhale用户CREATE USER bluewhale@'%' IDENTIFIED BY 'bluewhale';CREATE USER bluewhale@'localhost' IDENTIFIED BY 'bluewhale';

2021-05-11 08:06:55 332 3

原创 函数的抽样与复原

本文为对钱晓凡老师编著的《信息光学数字实验室》代码内容复现的一些思考整理。更多理论详细内容,请查阅相关书籍。实验内容(1)利用Matalb中自带的peaks函数创建一个二维带限函数,通过傅里叶变换观察其频谱,并测量其带宽,理解“带限”的含义;(2)构建二维梳状函数,并显示其空间分布及频谱,观察改变梳状函数的空间间隔——抽样间隔后频谱的变化;(3)利用梳状函数对连续函数抽样,得到该函数的抽样函数,在空域观察抽样函数;(4)观察抽样函数的频谱,并与原连续函数的频谱做比较,体会抽样函数的频谱、梳状函数的

2021-04-16 11:11:36 2643

原创 Package fontspec Error: The font “SimHei“ cannot be found. windows 上海交大学位论文模板

1引言准备用Latex写大论文,上Github上找到了学校师兄们提供的模板,拷贝下来进行编译。上海交大的同学,可以到这里去寻找最新的源文档。2 问题我用的是TeXworks2019进行编译,具体步骤,打开main.tex,然后编译。报错如下:The command name is C:\texlive\2019\bin\win32\mktexmfCannot find SimHei/I/OT.mf.name = SimHei/OT, rootname = SimHei/OT, pointsize

2020-12-31 14:52:31 5097

原创 python之文件与文件系统

1. 文件与文件系统1.1 打开文件open(file, mode='r', buffering=None, encoding=None, errors=None, newline=None, closefd=True) Open file and return a stream. Raise OSError upon failure.file: 必需,文件路径(相对或者绝对路径)。mode: 可选,文件打开模式buffering: 设置缓冲encoding: 一般使用utf8erro

2020-08-07 20:43:17 210

原创 python模块之datetime模块

datetime 是 Python 中处理日期的标准模块,它提供了 4 种对日期和时间进行处理的类:datetime、date、time 和 timedelta。1. datetime类1.1 简介class datetime(date): def __init__(self, year, month, day, hour, minute, second, microsecond, tzinfo) pass def now(cls, tz=None):

2020-08-07 19:26:30 318

原创 模块和包

**包(Package)**主要是为了处理不同的人编写的模块名相同,而引入的用来按目录组织模块的方法。**模块(Module)**是为了便于代码的维护,把很多函数分组,放到不同的文件里,使得每个文件包含的代码较少的代码组织方式。在Python 中,一个.py文件就称之为一个模块(Module)。1 模块(Module)模块是程序文件的封装。对比下已有的封装:容器 -> 数据的封装函数 -> 语句的封装类 -> 方法和属性的封装模块 -> 程序文件1.1 创建一个模

2020-08-06 14:26:02 160

原创 对象与类练习

练习题1、以下类定义中哪些是类属性,哪些是实例属性?class C: num = 0 #类属性 def __init__(self): self.x = 4 #实例属性 self.y = 5 #实例属性 C.count = 6 #类属性 def fun(self): print('类对象.类属性的值:', C.num) print('self.类属性的值:',self.num) print(

2020-08-05 21:17:58 396

原创 函数与解析式

1 函数1.1 常规函数1.1.1 基本结构python中常规函数(normal function)主要是区别于匿名函数(Lambda函数)、高阶函数而言。其基本形式为:def functionname(parameters): """函数_文档字符串""" function_suite return [expression]def ——定义函数的关键字词functionname —— 函数名parameters —— 形式参数:—— 冒号,语法规定“”“函

2020-08-02 18:38:09 744

原创 python之字典创建与访问

1 用字符串或数值作为key创建字典如下例:dic1 = {1: 'one', 2: 'two', 3: 'three'}print(dic1) # {1: 'one', 2: 'two', 3: 'three'}print(dic1[1]) # oneprint(dic1[4]) # KeyError: 4dic2 = {'rice': 35, 'wheat': 101, 'corn': 67}print(dic2) # {'wheat': 101, 'corn': 67, 'ri

2020-07-31 20:08:30 735

原创 python中的装包和解包

1 拆包拆包就是将一个对象拆为多个对象,拆包实际上可以应用到任何可迭代对象上,唯一的硬性要求是,被可迭代对象中的元素数量必须要跟接受这些元素的元组的空档数一致。除非我们用 * 来表示忽略多余的元素。带*的变量返回列表。1.1 列表拆包例:a, b, c = ['aaa', 'bbb', 'ccc']print(a, b, c)# aaa bbb ccc列表中的元素对应赋值给相应的变量。1.2 字典拆包例:a, b, c = {'key1': 'value1', 'key2': 'val

2020-07-28 20:52:57 1038

原创 python列表操作之常用练习

练习题:1、列表操作练习列表lst 内容如下lst = [2, 5, 6, 7, 8, 9, 2, 9, 9]请写程序完成下列操作:在列表的末尾增加元素15在列表的中间位置插入元素20将列表[2, 5, 6]合并到lst中移除列表中索引为3的元素翻转列表里的所有元素对列表里的元素进行排序,从小到大一次,从大到小一次lst=[2, 5, 6, 7, 8, 9, 2, 9, 9]lst.append(15) #在列表的末尾增加元素15lst.insert(round(len(ls

2020-07-23 17:01:51 2067

原创 python异常处理try-except语句

1 为什么用try-except 语句首先我们来说说,为什么要用try-except 语句。简单来说,为了避免程序意外退出,而需要使用的语句。首先来看一段代码,你会更加容易理解:try: 1 / 0except ZeroDivisionError: print('Divided by zero')print('Should reach here')执行后:Divided by zeroShould reach here试想一下,如果我们直接用1/0,执行后会出现什

2020-07-23 16:08:15 10485 3

原创 Python之龟兔赛跑

题目描述:话说这个世界上有各种各样的兔子和乌龟,但是研究发现,所有的兔子和乌龟都有一个共同的特点——喜欢赛跑。于是世界上各个角落都不断在发生着乌龟和兔子的比赛,小华对此很感兴趣,于是决定研究不同兔 子和乌龟的赛跑。他发现,兔子虽然跑比乌龟快,但它们有众所周知的毛病——骄傲且懒惰,于是在与乌龟的比赛中,一旦任一秒结束后兔子发现自己领先t米或以 上,它们就会停下来休息s秒。对于不同的兔子,t,s的数值是不同的,但是所有的乌龟却是一致——它们不到终点决不停止。然而有些比赛相当漫长,全程观看会耗费

2020-07-23 13:59:33 2565

原创 Python之代码调试assert和raise关键词

基本上每一种编程语言中都有assert关键词。作为一种常用的调试工具,利用好assert可以有效的提升编程效率,但如何正确是使用,依然是很多初学者面临的问题。本文从以下几个方面进行说明:1、 assert与raise exception语句使用的正确场景;assert 的意义是在测试关键词后的条件(condition)为False时,程序自动崩溃并抛出AssertionError的异常。常用形式为:assert expression等同于如下代码:if _debug_: if not

2020-07-22 15:20:49 2540

原创 Python之位运算实现整数集合

让为运算和整数集合联系起来,牛掰而又有趣的操作,拜服能够将二者联系起来的前辈。废话不多说了,我将尽力将描述,以求大家能够更好的运用。1 一个例子一个数的二进制表示可以看作是一个集合(0 表示不在集合中,1 表示在集合中)。那么这是如何实现的呢?我们以一个集合{1,5,6,8} 为例进行说明,其对应用二进制表示为:01 01 10 00 10。用表格进行理解即为:就是哪个整数在集合中,那么数字对应大小的二进制所在的位的值就为1。这样表示有什么好处呢?能够用来做什么?2 应用2.1 从集合中插入、

2020-07-22 13:44:22 934 1

原创 Python笔记之位运算及其应用

位运算符理解起来稍微有点复杂,要理解按位运算符,要先了解计算机进行存储和计算的底层逻辑。详见https://zhuanlan.zhihu.com/p/1065354601 原码、反码、补码这三个码的产生,都和表示减法(负数)有关,在表示正数时完全一样。那么为什么为了表示负数,出现三个码,让我们一一道来。1.1 原码在计算集中,为了解决负数(减号)的表示问题,采用最高位存放符号,正数为0, 负数为1。当我们用4位来表示一个整数时,在计算2减去2时,就是0010和1010加起来,会得到1100,等于

2020-07-21 15:14:13 525

原创 Python学习笔记之运算符和数据类型

1 变量、运算符与数据类型1.1 注释在python中主要用“#”进行单行注释,三个单引号’’’ ‘’'或三个双引号“”“ ”“”进行多行注释,非常简单,不再赘述。常用快捷键:Pycharm中()多行注释:选中代码后 快捷键 Ctrl + /单行注释:也可以选中或光标停留在该行 Ctrl + /1.2 运算符1.2.1 算术运算符常见的有加(+)、减(-)、乘(*)、除(/)、整除(地整除)(//)、取余(%)、幂(**)print(11//3) #3print(2**3

2020-07-21 11:12:47 406

原创 行人检测之HOG特征描述算子

详细资料4.1 简介本次任务将学习一种在深度学习之前非常流行的图像特征提取技术——方向梯度直方图(Histogram of Oriented Gradients),简称HOG特征。HOG特征是在2005年CVPR的会议发表,在图像手工特征提取方面具有里程碑式的意义,当时在行人检测领域获得了极大成功。学习HOG特征的思想也有助于我们很好地了解传统图像特征描述和图像识别方法,本次任务我们将学习到HOG背后的设计原理,和opencv的实现。4.2 学习目标理解HOG特征的原理和思想 使用OpenCV

2020-07-06 18:58:13 362

原创 Haar特征描述算子-人脸检测

Haar特征描述算子-人脸检测详细资料3.1简介Haar-like特征最早是由Papageorgiou等应用于人脸表示,在2001年,Viola和Jones两位大牛发表了经典的《Rapid Object Detection using a Boosted Cascade of Simple Features》和《Robust Real-Time Face Detection》,在AdaBoost算法的基础上,使用Haar-like小波特征和积分图方法进行人脸检测,他俩不是最早使用提出小波特征的,但是他

2020-07-01 14:13:55 3108

原创 人脸检测之LBP特征描述算子

详细资料2.1 简介2.2 算法理论介绍2.3.1 LBP原理介绍LBP特征用图像的局部领域的联合分布TTT 来描述图像的纹理特征,如果假设局部邻域中像素个数为P(P>1)P(P >1)P(P>1),那么纹理特征的联合分布TTT 可以表述成:T=t(gc,g0,…,gp−1)p=0,…,P−1(2-1)T=t\left(g_{c}, g_{0}, \ldots, g_{p-1}\right) \quad p=0, \ldots, P-1\tag{2-1}T=t(gc​,g0​,…

2020-06-28 20:44:14 317

原创 Matlab外部程序接口

中南大学慕课教程10.1 在Excel中使用Matlab10.1.1 Spreadsheet Link程序1 打开Excel,选择菜单栏“文件”选项,再选择“选项”里按下图先选加载项,再点击“转到”弹出加载宏对话框(注意未加载时无Spreadsheet Link)。单击“浏览”,找到安装Matlab的位置里“toolbox”文件夹中“exlink”文件中的excllink文件。加载完毕后,在Excel窗口会多出MATLAB命令组10.1.2 将Excel表格中的数据导出到Matla

2020-06-24 14:25:22 1705

原创 Harris 角点检测与实现

资料仓库1.1 简介在图像处理领域中,特征点又被称为兴趣点或者角点,它通常具有旋转不变性和光照不变性和视角不变性等优点,是图像的重要特征之一,常被应用到目标匹配、目标跟踪、三维重建等应用中。点特征主要指图像中的明显点,如突出的角点、边缘端点、极值点等等,用于点特征提取的算子称为兴趣点提取(检测)算子,常用的有Harris角点检测、FAST特征检测、SIFT特征检测及SURF特征检测。 本次任务学习较为常用而且较为基础的Harris角点检测算法,它的思想以及数学理论能够很好地帮助我们了解兴趣点检测的相关原

2020-06-23 20:04:42 384

原创 Matlab学习之—符号计算

慕课地址7.1 符号对象7.1.1 符号对象的建立sym函数符号计算的结果是一个精确的数学表达式,更像是一种符号推演,结果是完全精确的。数值计算的结果是一个数值,是近似解。syms命令7.1.2 符号对象的运算syms x;f = 2*x^2 +3*x-5;g = x^2+7;f+g结果:3*x^2 + 3*x + 2syms x;assume(x<0);abs(x) == x结果ans = -x == xassume(x,'positive'

2020-06-09 19:20:18 2500 2

原创 CV入门赛事-模型集成

Datawhale 零基础入门CV赛事-Task5 模型集成文章目录5 模型集成5.1 学习目标5.2 集成学习方法5.3 深度学习中的集成学习5.3.1 Dropout5.3.2 TTA5.3.3 Snapshot5.4 结果后处理5.5 本章小节在上一章我们学习了如何构建验证集,如何训练和验证。本章作为本次赛题学习的最后一章,将会讲解如何使用集成学习提高预测精度。5 模型集成本章讲解的知识点包括:集成学习方法、深度学习中的集成学习和结果后处理思路。5.1 学习目标学习集成学习方法以及交叉验

2020-06-02 09:26:12 144

原创 CV入门赛事-模型训练与验证

Datawhale 零基础入门CV赛事-Task4 模型训练与验证在上一章节我们构建了一个简单的CNN进行训练,并可视化了训练过程中的误差损失和第一个字符预测准确率,但这些还远远不够。一个成熟合格的深度学习训练流程至少具备以下功能:在训练集上进行训练,并在验证集上进行验证;模型可以保存最优的权重,并读取权重;记录下训练集和验证集的精度,便于调参。4 模型训练与验证为此本章将从构建验证集、模型训练和验证、模型保存与加载和模型调参几个部分讲解,在部分小节中将会结合Pytorch代码进行讲解。4

2020-05-30 11:37:47 407

原创 Matlab数值微积分与方程求解

课程参考:https://www.icourse163.org/learn/CSU-1002475002?tid=1206743216#/learn/content?type=detail&id=1211570840&cid=1214317955文章目录一、数值微分与数值积分1.1 数值微分1.2 数值积分quad函数quadl函数integral函数quadgk函数trapz函数多重定积分的数值求解二、线性方程组求解2.1 直接法2.1.1 高斯(Gauss)消去法2.1.2 列主元消去

2020-05-28 20:32:32 2691 1

原创 CV赛事—数据读取与数据扩增

Datawhale 零基础入门CV赛事-Task2 数据读取与数据扩增文章目录1 数据读取与数据扩增2 常见的数据扩增方法2.1 读入并显示图片2.2 PyTorch数据增强(image transformations)2.2.1 Compose2.2.2 常见变化Resize标准化转换为 PILImage转为 Tensor2.2.3 裁剪 Croptransforms.CenterCrop 中心裁剪RandomCrop 随机裁剪RandomResizedCrop 随机长宽比裁剪FiveCrop 上下左

2020-05-24 20:33:54 334

原创 pytorch 加载已训练好的(.pth)格式模型

1 简介pytorch里有一些非常流行的网络如 resnet、wide_resnet101_2、squeezenet、densenet等,包括网络结构和训练好的模型。pytorch自带模型网址:https://pytorch-cn.readthedocs.io/zh/latest/torchvision/torchvision-models/按照官网加载预训练的模型:import torchvision.models as models # pretrained=True就可以使用预训练的模型

2020-05-23 13:33:29 27814

原创 Datawhale&天池 零基础入门CV赛事-Task1 赛题理解

Datawhale&天池 零基础入门CV赛事-Task1 赛题理解本章内容将会对街景字符识别赛题进行赛题背景讲解,对赛题数据的读取进行说明,并给出集中解题思路。1 赛题理解赛题名称:零基础入门CV之街道字符识别赛题目标:通过这道赛题可以引导大家走入计算机视觉的世界,主要针对竞赛选手上手视觉赛题,提高对数据建模能力。赛题任务:赛题以计算机视觉中字符识别为背景,要求选手预测街道字符编码,这是一个典型的字符识别问题。为了简化赛题难度,赛题数据采用公开数据集SVHN,因此大家可以选择很多相应

2020-05-20 11:05:22 244

原创 Matlab数据分析与多项式计算

一 数据统计分析1.1 求最大元素与最小元素max(): 求向量或矩阵的最大元素。min(): 求向量或矩阵的最小元素。当参数为向量时,两种调用格式:(1) y = max(X): 返回向量X的最大值存入y,如果X中包含复数元素,则按模取最大值。(2)[y,k] = max(X): 返回向量X的最大值存入y, 最大元素的序号存入k, 如果X中包含复数元素,则按模取最大值。x=[-43,72,9,16,23,47];y=max(x) [y,k]=max(x)当参数为矩阵时,函数有三种调用

2020-05-17 15:28:04 1380

原创 Matlab学习笔记 - 绘图

Matlab绘图本文根据慕课科学计算与MATLAB语言课程第四章整理总结如下笔记。慕课:https://www.icourse163.org/learn/CSU-1002475002?tid=1206743216#/learn/content?type=detail&id=1211570821&cid=1214317879内容框图如下:4.1 二维曲线4.1.1 plo...

2020-05-04 15:50:27 1405

原创 Pandas快乐学习之上海机动车牌照拍卖

数据集,请参考:链接:https://pan.baidu.com/s/1h-q4Nmb96rdKkYIuTEEe7Q提取码:f8xn一、2002 年-2018 年上海机动车拍照拍卖问题(1) 哪一次拍卖的中标率首次小于5%?(2) 按年统计拍卖最低价的下列统计量:最大值、均值、0.75 分位数,要求显示在同一张表上。(3) 将第一列时间列拆分成两个列,一列为年份(格式为20××),...

2020-05-01 22:33:34 1240

原创 Datawhale学习-图像边缘检测

所有资料可以参考:https://github.com/datawhalechina/team-learning/blob/master/%E8%AE%A1%E7%AE%97%E6%9C%BA%E8%A7%86%E8%A7%89%E5%9F%BA%E7%A1%80%EF%BC%9A%E5%9B%BE%E5%83%8F%E5%A4%84%E7%90%86%EF%BC%88%E4%B8%8A%EF%...

2020-05-01 16:45:41 1135

原创 Pandas快乐学习之合并

所有数据请参考:https://github.com/datawhalechina/team-learning/tree/master/Pandas%E6%95%99%E7%A8%8B%EF%BC%88%E4%B8%8A%EF%BC%89import numpy as npimport pandas as pddf = pd.read_csv('data/table.csv')df.he...

2020-04-30 20:18:41 200

原创 计算机视觉基础-图像分割/二值化

更多内容请参考:https://github.com/datawhalechina/team-learning/blob/master/%E8%AE%A1%E7%AE%97%E6%9C%BA%E8%A7%86%E8%A7%89%E5%9F%BA%E7%A1%80%EF%BC%9A%E5%9B%BE%E5%83%8F%E5%A4%84%E7%90%86%EF%BC%88%E4%B8%8A%EF%BC...

2020-04-29 21:48:59 855

原创 Pandas快乐学习之-变形

所有资料可以参考:https://github.com/datawhalechina/joyful-pandas本章学习建议提前观看视频:https://www.bilibili.com/video/BV1aA41147Vw?from=search&seid=5957324151785881971https://www.bilibili.com/video/BV1ST4y1g7He?f...

2020-04-29 09:33:37 260

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除