Pandas快乐学习之-变形

所有资料可以参考:https://github.com/datawhalechina/joyful-pandas
本章学习建议提前观看视频:https://www.bilibili.com/video/BV1aA41147Vw?from=search&seid=5957324151785881971
https://www.bilibili.com/video/BV1ST4y1g7He?from=search&seid=5957324151785881971

import numpy as np
import pandas as pd
df = pd.read_csv('data/table.csv')
df.head()

一、透视表

1. pivot

一般状态下,数据在DataFrame会以压缩(stacked)状态存放,例如上面的Gender,两个类别被叠在一列中,pivot函数可将某一列作为新的cols:
df.pivot(index='ID',columns='Gender',values='Height').head()

然而pivot函数具有很强的局限性,除了功能上较少之外,还不允许values中出现重复的行列索引对(pair),例如下面的语句就会报错:

#df.pivot(index='School',columns='Gender',values='Height').head()

因此,更多的时候会选择使用强大的pivot_table函数

2. pivot_table

首先,再现上面的操作:

pd.pivot_table(df,index='ID',columns='Gender',values='Height').head()

由于功能更多,速度上自然是比不上原来的pivot函数:

%timeit df.pivot(index='ID',columns='Gender',values='Height')
%timeit pd.pivot_table(df,index='ID',columns='Gender',values='Height')

Pandas中提供了各种选项,下面介绍常用参数:

① aggfunc:

对组内进行聚合统计,可传入各类函数,默认为’mean’

pd.pivot_table(df,index='School',columns='Gender',values='Height',aggfunc=['mean','sum']).head()
② margins:汇总边际状态
pd.pivot_table(df,index='School',columns='Gender',values='Height',aggfunc=['mean','sum'],margins=True).head()
#margins_name可以设置名字,默认为'All'
③ 行、列、值都可以为多级
pd.pivot_table(df,index=['School','Class'],
               columns=['Gender','Address'],
               values=['Height','Weight'])

3. crosstab(交叉表)

交叉表是一种特殊的透视表,典型的用途如分组统计,如现在想要统计关于街道和性别分组的频数:

pd.crosstab(index=df['Address'],columns=df['Gender'])

交叉表的功能也很强大(但目前还不支持多级分组),下面说明一些重要参数:

① values和aggfunc:分组对某些数据进行聚合操作,这两个参数必须成对出现
pd.crosstab(index=df['Address'],columns=df['Gender'],
            values=np.random.randint(1,20,df.shape[0]),aggfunc='min')
#默认参数等于如下方法:
#pd.crosstab(index=df['Address'],columns=df['Gender'],values=1,aggfunc='count')
② 除了边际参数margins外,还引入了normalize参数,可选’all’,‘index’,'columns’参数值
pd.crosstab(index=df['Address'],columns=df['Gender'],normalize='all',margins=True)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值