机器学习笔记之梯度下降(二)

Gradient Descent Intuition

In this video we explored the scenario where we used one parameter  θ1  and plotted its cost function to implement a gradient descent. Our formula for a single parameter was :

Repeat until convergence:

θ1:=θ1αddθ1J(θ1)

Regardless of the slope's sign for  ddθ1J(θ1) θ1  eventually converges to its minimum value. The following graph shows that when the slope is negative, the value of  θ1  increases and when it is positive, the value of  θ1  decreases.

On a side note, we should adjust our parameter  α  to ensure that the gradient descent algorithm converges in a reasonable time. Failure to converge or too much time to obtain the minimum value imply that our step size is wrong.

How does gradient descent converge with a fixed step size  α ?

The intuition behind the convergence is that  ddθ1J(θ1)  approaches 0 as we approach the bottom of our convex function. At the minimum, the derivative will always be 0 and thus we get:

θ1:=θ1α0


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值