机器学习笔记之正规方程

Normal Equation

Note: [8:00 to 8:44 - The design matrixX (in the bottom right side of the slide) given in the example should haveelements x with subscript 1 and superscripts varying from 1 to m because forall m training sets there are only 2 features x0 and x1. 12:56 - The Xmatrix is m by (n+1) and NOT n by n. ]

Gradient descentgives one way of minimizing J. Let’s discuss a second way of doing so, thistime performing the minimization explicitly and without resorting to aniterative algorithm. In the "Normal Equation" method, we will minimize J by explicitly taking its derivatives with respect to the θj ’s, andsetting them to zero. This allows us to find the optimum theta without iteration. The normal equation formula is given below:

θ=(XTX)−1XTy


There is noneed to do feature scaling with the normal equation.

The following isa comparison of gradient descent and the normal equation:

Gradient Descent

Normal Equation

Need to choose alpha

No need to choose alpha

Needs many iterations

No need to iterate

O (kn2)

O (n3), need to calculate inverse of XTX

Works well when n is large

Slow if n is very large

With the normal equation, computing the inversion has complexity O(n3). So if we havea very large number of features, the normal equation will be slow. In practice,when n exceeds 10,000 it might be a good time to go from a normal solution toan iterative process.

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值