题目链接http://www.acmicpc.sdnu.edu.cn/problem/show/1493
题意很简单,多组输入,问你(1+sqrt(2))^n = sqrt(m)+sqrt(m-1)是否成立,输出m%(1e9+7)...
开始我完全不知道这个题该怎么做,还是百度了一下,这原来是个找规律+矩阵快速幂!!
详见这位大佬的博客吧:https://blog.csdn.net/winycg/article/details/69808789(其实是我懒得打那些符号了)
AC代码:
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
const int MOD = 1000000007;
const int nn = 2;
typedef long long ll;
#define mod(x) ((x)%MOD)
struct mat{
ll m[2][2];
}unit;
mat operator * (mat a, mat b){
mat ret;
ll x;
for(int i = 0; i < nn; i++){
for(int j = 0; j < nn; j++){
x = 0;
for(int k = 0; k < nn; k++)
x += mod(a.m[i][k] * b.m[k][j]);
ret.m[i][j] = mod(x);
}
}
return ret;
}
void init_unit(){
for(int i = 0; i < 2; i++){
unit.m[i][i] = 1;
}
}
mat pow_mat(mat a, ll n){
mat ret = unit;
while(n){
if(n&1) ret = ret*a;
a = a*a;
n >>= 1;
}
return ret;
}
int main()
{
ll n;
while(~scanf("%lld", &n)){
mat a, aria;
a.m[0][0] = a.m[1][0] = a.m[1][1] = 1;
a.m[0][1] = 2;
init_unit();
aria = pow_mat(a, n-1);
ll t = mod( (aria.m[0][0] + aria.m[0][1]) );
if(n&1)
cout << (ll)mod((t*t+1)) <<endl;
else
cout << (ll)mod((t*t)) <<endl;
}
return 0;
}
补一个:1340
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const int mod = 1000000007;
struct mat{
ll a[2][2];
};
mat mat_mul(mat x, mat y)
{
mat res;
memset(res.a, 0, sizeof(res.a));
for(int i = 0; i < 2; i++){
for(int j = 0; j < 2; j++){
for(int k = 0; k < 2; k++){
res.a[i][j] = (res.a[i][j] + x.a[i][k] * y.a[k][j]) % mod;
}
}
}
return res;
}
ll pow_matrix_mod(int n, int a, int b)
{
mat c, res;
memset(res.a, 0, sizeof(res.a));
c.a[0][0] = a; c.a[0][1] = b;
c.a[1][0] = 1; c.a[1][1] = 0;
for(int i = 0; i < 2; i++){
res.a[i][i] = 1;
}
n -= 1;
while(n){
if(n & 1) res = mat_mul(res, c);
c = mat_mul(c, c);
n >>= 1;
}
cout << (res.a[1][0] + res.a[1][1]) % mod << '\n';
}
int main()
{
int n, a, b;
while(~scanf("%d %d %d", &a, &b, &n)){
if(n == 0 && a == 0 && b == 0) break;
pow_matrix_mod(n, a, b);
}
}