Gmedian是Geometric median的简称,也叫做spatial median 或者 L1-median,描述的是到
n
n
n个点的加权距离之和最小的那个点。是平凡中位数的扩展。
所谓的中位数,是在一个有序数组的中间位置的那个数。如果是偶数个数,那么是中间位置的两个数的均值。比如
{
1
,
2
,
3
}
\{1,2,3\}
{1,2,3}的中位数为2,
{
1
,
2
,
3
,
4
}
\{1,2,3,4\}
{1,2,3,4}的中位数为2.5。中位数存在的前提是两个数之间是可比较的,这样才能排序,然后确定中间位置的那个数。
但是,如果不是数而是点呢?
点之间是无法直接比较大小的,所以给点排序不是一个直接的操作。当然,有一个例外,就是所有点在同一条直线上的时候,这些点是天然有序的,只需要取其中间位置的点作为中位数就可以了。
如果我们需要在数据是点时,也能找出一个像中位数这样的统计量,那就是Gmedian。
这个问题叫做Fermat–Weber problem:一个点到给定
n
n
n个点的距离之和最小。当然,还有一个条件时这
n
n
n个点不在同一条直线上。
具体一点的描述是,假设我们有
n
n
n个不同的点
{
A
1
,
A
2
,
⋯
,
A
n
}
\{A_1,A_2,\cdots,A_n\}
{A1,A2,⋯,An}不在同一条直线上(一般默认这n个点互不相同),那么存在一个唯一的点M,使得对任意不同于M的点,有下列不等式成立:
∑
i
=
1
n
∥
X
−
A
i
∥
2
>
∑
i
=
1
n
∥
M
−
A
i
∥
2
.
\sum_{i=1}^{n}\|X-A_i\|^2> \sum_{i=1}^{n}\|M-A_i\|^2.
i=1∑n∥X−Ai∥2>i=1∑n∥M−Ai∥2.
其中,
∥
X
−
A
i
∥
2
\|X-A_i\|^2
∥X−Ai∥2表示点X和点A之间的距离。
有以下两个定理成立:
1、如果存在一个不在
{
A
1
,
A
2
,
⋯
,
A
n
}
\{A_1,A_2,\cdots,A_n\}
{A1,A2,⋯,An}中的带你M,满足:
∑
i
=
1
n
U
(
M
A
i
)
=
0
,
\sum_{i=1}^{n}U(MA_i)=0,
i=1∑nU(MAi)=0,
那么这个点M是Gmedian。
2、如果存在一个唯一的点
A
k
∈
{
A
1
,
A
2
,
⋯
,
A
n
}
A_k\in \{A_1,A_2,\cdots,A_n\}
Ak∈{A1,A2,⋯,An}满足:
∣
∑
i
=
1
n
U
(
A
k
A
i
)
∣
≤
1
,
\left |\sum_{i=1}^{n} U(A_kA_i) \right| \le1,
∣∣∣∣∣i=1∑nU(AkAi)∣∣∣∣∣≤1,
那么
A
k
A_k
Ak是Gmedian。
其中
U
(
R
,
S
)
=
S
−
R
∥
S
−
R
∥
U(R,S)=\frac{S-R}{\|S-R\|}
U(R,S)=∥S−R∥S−R,是从R指向S的一个单位向量。
Gmedian(几何中位数或者中位数中心)
于 2022-04-24 23:09:22 首次发布