排列与二进制(吉,大)(DAY 84)

1:题目

ji 林 大 xue 机试题

在组合数学中,我们学过排列数。

从 n 个不同元素中取出 m(m<=n)个元素的所有排列的个数,叫做从 n 中取 m 的排列数,记为 p(n,m)。

具体计算方法为 p(n,m)=n(n−1)(n−2)……(n−m+1)=n!/(n−m)!(规定 0!=1)。

当 n 和 m 不是很小时,这个排列数是比较大的数值,比如 p(10,5)=30240。

如果用二进制表示为 p(10,5)=30240=(111011000100000)b,也就是说,最后面有 5 个零。

我们的问题就是,给定一个排列数,算出其二进制表示的后面有多少个连续的零。

输入格式
输入包含多组测试数据。

每组数据占一行,包含两个整数 n,m。

最后一行为 0 0,表示输入结束,无需处理。

输出格式
每组数据输出一行,一个结果,表示排列数 p(n,m) 的二进制表示后面有多少个连续的零。

数据范围
1≤m≤n≤10000,
输入最多包含 100 组数据。

输入样例:
10 5
6 1
0 0
输出样例:
5
1
难度:简单
时/空限制:1s / 64MB
总通过数:681
总尝试数:1047
来源:吉林大学考研机试题
算法标签

2:代码实现

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

int f(int n, int p)
{
    int res = 0;
    while (n) res += n / p, n /= p;
    return res;
}

int main()
{
    int n, m;
    while (cin >> n >> m, n)
        cout << f(n, 2) - f(n - m, 2) << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张学恒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值