1:题目
ji 林 大 xue 机试题
在组合数学中,我们学过排列数。
从 n 个不同元素中取出 m(m<=n)个元素的所有排列的个数,叫做从 n 中取 m 的排列数,记为 p(n,m)。
具体计算方法为 p(n,m)=n(n−1)(n−2)……(n−m+1)=n!/(n−m)!(规定 0!=1)。
当 n 和 m 不是很小时,这个排列数是比较大的数值,比如 p(10,5)=30240。
如果用二进制表示为 p(10,5)=30240=(111011000100000)b,也就是说,最后面有 5 个零。
我们的问题就是,给定一个排列数,算出其二进制表示的后面有多少个连续的零。
输入格式
输入包含多组测试数据。
每组数据占一行,包含两个整数 n,m。
最后一行为 0 0,表示输入结束,无需处理。
输出格式
每组数据输出一行,一个结果,表示排列数 p(n,m) 的二进制表示后面有多少个连续的零。
数据范围
1≤m≤n≤10000,
输入最多包含 100 组数据。
输入样例:
10 5
6 1
0 0
输出样例:
5
1
难度:简单
时/空限制:1s / 64MB
总通过数:681
总尝试数:1047
来源:吉林大学考研机试题
算法标签
2:代码实现
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int f(int n, int p)
{
int res = 0;
while (n) res += n / p, n /= p;
return res;
}
int main()
{
int n, m;
while (cin >> n >> m, n)
cout << f(n, 2) - f(n - m, 2) << endl;
return 0;
}