Python使用OpenCV识别图片人脸

在Python中,识别图片中的人脸并获取人脸区域的坐标,通常可以使用OpenCV库结合Haar特征分类器或更先进的DNN(深度神经网络)模型来实现。

安装OpenCV依赖

pip install opencv-python

Haar特征分类器

使用OpenCV和预训练的Haar级联分类器来识别图片中人脸并获取其坐标:

import cv2  
  
def detect_faces(image_path):  
    # 加载预训练的Haar级联分类器  
    face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')  
  
    # 读取图片  
    img = cv2.imread(image_path)  
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  
  
    # 检测图片中的人脸  
    faces = face_cascade.detectMultiScale(gray, 1.3, 5)  
  
    # 遍历检测到的所有人脸  
    for (x, y, w, h) in faces:  
        # 在原图上绘制矩形框  
        cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)  
  
    # 显示结果图片  
    cv2.imshow('img', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
  
    # 打印人脸区域的坐标
    for (x, y, w, h) in faces:
        print(f"Face found at: Left: {x} Top: {y} Right: {x+w} Bottom: {y+h}")  
  
# 调用函数,传入图片路径  
detect_faces('path_to_your_image.jpg')

上述代码中,detect_faces函数接受一个图片路径作为参数,并使用OpenCV的CascadeClassifier来加载一个预训练的Haar级联分类器,该分类器用于检测图片中的人脸。然后,它读取图片,将其转换为灰度图,并使用detectMultiScale方法检测人脸。检测到的每个人脸都会以矩形框的形式在原图上绘制出来,并打印出其坐标。

DNN(深度神经网络)模型

OpenCV提供了几个预训练的人脸检测模型,其中一个常用的模型是基于Caffe框架的resnet10_300x300_ssd_iter_140000.caffemodel和对应的配置文件deploy.prototxt。

下载模型:

https://github.com/opencv/opencv/tree/4.1.2/samples/dnn/face_detector

https://raw.githubusercontent.com/opencv/opencv_3rdparty/dnn_samples_face_detector_20180205_fp16/res10_300x300_ssd_iter_140000_fp16.caffemodel

 使用OpenCV和DNN模型来识别图片中人脸:

import cv2
import numpy as np

def detect_faces(image_path):
    # 加载预训练模型
    net = cv2.dnn.readNetFromCaffe('deploy.prototxt', 'res10_300x300_ssd_iter_140000_fp16.caffemodel')

    # 读取图像
    image = cv2.imread(image_path)
    (h, w) = image.shape[:2]

    # 图像预处理
    blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0,
                            (300, 300), (104.0, 177.0, 123.0))

    # 设置网络输入
    net.setInput(blob)

    # 进行检测
    detections = net.forward()

    # 绘制检测框
    for i in range(0, detections.shape[2]):
        confidence = detections[0, 0, i, 2]
        print("confidence: {:.3f}".format(confidence))
        if confidence > 0.5:
            box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
            (startX, startY, endX, endY) = box.astype("int")
            cv2.rectangle(image, (startX, startY), (endX, endY), (0, 255, 0), 2)

    # 显示结果
    cv2.imshow('Face Detection', image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

# 调用函数,传入图片路径  
detect_faces('path_to_your_image.jpg')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值