Stable Video Diffusion(SVD)搭建部署

Stable Video Diffusion(SVD)是Stability AI于2023年11月21日发布的视频生成式大模型,是一种用于高分辨率、先进的文本到视频和图像到视频生成的潜在视频扩散模型。该模型不仅支持文本、图像生成视频,还支持多视角渲染和帧插入提升视频帧率,用户可以调整模型选择、视频尺寸、帧率及镜头移动距离等参数。

SVD模型对硬件要求较高,对缺乏硬件资源的普通用户有一定限制,且其支持的图片尺寸较小,限制了应用场景。尽管SVD与其他商用产品在帧率、分辨率、内容控制、风格选择和视频生成时长等方面存在差距,但其开源属性和对大规模数据的有效利用构成了独特优势。

Stable Video Diffusion开源了两种图生视频的模型,一种是能够生成 14 帧的SVD,另一种则是可以生成25帧的 SVD-XL。

模型权重

官方模型权重:

SVD模型权重地址:

https://huggingface.co/stabilityai/stable-video-diffusion-img2vid

SVD-XL模型权重地址:

https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt

SVD 1.1 模型权重地址:

https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt-1-1

fp16模型权重:

SVD-fp16模型权重地址:

https://huggingface.co/becausecurious/stable-video-diffusion-img2vid-fp16

硬件环境

内存:32G

显卡:24G

安装依赖

下载Git仓库

git clone https://github.com/Stability-AI/generative-models
cd generative-models

基础环境配置

conda create --name svd python=3.10   #建议选择 python3.10及以上版本

conda activate svd
pip install -r requirements/pt2.txt
pip install .

# 安装ffmpeg
sudo apt install ffmpeg

开始运行

cd generative-models
streamlit run scripts/demo/video_sampling.py --server.address 0.0.0.0 --server.port 8888

在运行后,程序会自动去下载两个模型:

如果网络不好,可以手动下载下来后,分别放到路径如下:

/root/.cache/huggingface/hub/models–laion–CLIP-ViT-H-14-laion2B-s32B-b79K
/root/.cache/clip/ViT-L-14.pt

运行成功后,在浏览器打开url

 点击下拉箭头,选择不同模型版本,再勾选 load Model。

之后就可以输入图片生成视频。

### Stable Video Diffusion (SVD)介绍 Stable Video Diffusion (SVD),由 Stability AI 推出,旨在构建一个高质量的视频生成通用模型。此模型通过大规模数据集训练,在多种下游任务中微调后均展现出优异的效果[^1]。 #### 工作原理 核心理念在于扩展潜在扩散模型至大型数据集的应用范围。具体实现上,SVD基于预训练的文字到图像模型进行微调,并引入时间层(temporal layers),从而赋予模型理解帧间关系的能力。这一过程涉及收集并清理大量视频素材作为训练基础,随后利用这些资料进一步优化模型参数,使其能够捕捉动态变化特征。 对于技术细节而言,SVD采用了类似于稳定扩散架构的设计思路,但在处理三维时空信息方面做了针对性改进。例如,为了适应更复杂的场景转换需求,除了常规的空间编码外,特别加入了针对连续帧之间过渡平滑性的考量机制。此外,考虑到计算资源的有效利用,提供了不同版本的权重文件供用户选择,如`svd-fp16.safetensors`对应于SD2.1模型配置下的轻量化选项[^2]。 #### 应用领域 得益于其强大的泛化能力和灵活性,SVD适用于多个应用场景: - **创意内容创作**:艺术家可以借助该工具快速生成具有艺术风格的动画片段; - **影视后期制作**:用于特效合成、背景替换等工作流程中的辅助设计; - **虚拟现实体验开发**:创建沉浸式的交互环境所需的真实感画面渲染; - **科学研究可视化**:帮助研究人员更好地展示复杂概念或模拟结果。 ```python import torch from diffusers import StableVideoDiffusionPipeline model_path = "path/to/svd-model" device = "cuda" pipeline = StableVideoDiffusionPipeline.from_pretrained(model_path).to(device) prompt = ["a beautiful sunset over mountains"] video_frames = pipeline(prompt=prompt, num_inference_steps=50, guidance_scale=7.5)["frames"] for frame in video_frames: display(frame) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值