对抗女巫的魔法碎片
Problem Description
光明世界的一个国家发生动荡,女巫利用了邪恶的力量将国家的村庄都施下了咒语,好在国家还有英勇 的士兵,他们正义的力量能够破解这些魔咒夺回村庄,并且得到魔法碎片,利用足够多的魔法碎片可以将女巫铲除。
现在己经被魔咒封印的村庄有m个,编号为1到m。英勇的士兵n个,编号从1到n。第i个士兵攻击力 为ai,第j个村庄防御力为bj,魔法价值为cj。
现在这些士兵想夺回这些村庄,每个士兵可以最多占领一个村庄,一个村庄最多被一个士兵占领。当士兵的攻击力ai大于村庄的防御力bj的时候,该士兵就可以夺回这个村庄,并且士兵会获得魔法碎片ai−bj+cj 个。
现在想知道这些士兵夺回村庄,获得的魔法碎片之和最多是多少Input
输入第一行一个整数T,表示有T组数据。
接下来一行输入两个整数n和m。
接下来一行,输入n个数ai,表示士兵的攻击力。
接下来m行,每行输入两个数bi,ci,表示村庄的防御力和该村庄的魔法价值。
1 <= n,m <= 100000
1 <= ai,bi,ci <= 100000Output
一个整数,表示获得的魔法碎片的数量
Sample Input
2
3 3
4 4 4
2 3
1 3
5 3
3 3
4 4 6
2 3
4 3
5 3
Sample Output
11
10
思路:
参考了对抗女巫的魔法碎片 文章
感觉是是贪心,先按照村庄的实际价值(本身价值-防御力)降序排序,那么我们就想从前到后的尽可能多的攻打这些村庄。
但是因为士兵是有攻击力这么一说的,所以我们要尽可能的让刚好大于村庄防御力的士兵去攻打,每次都妄图以最小的代价去获得最大的利益。这样,获取的实际利益最大并且攻打的数量也是最多。
可以用multiset存士兵的攻击,然后用upper_bound()去找刚好大于防御力的某个士兵。
最后我们会的到能攻打的村庄的数量,虽然我们在过程中是用最小攻击力的士兵攻打,但是题目中的利益获得是士兵的攻击力高也就越高,所以我们得到数量后,用攻击力高的士兵去算利益。
AC代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<set>
#include<cstring>
using namespace std;
const int maxn = 100010;
int a[maxn]; //士兵
int b[maxn]; //村庄防御
int c[maxn]; //村庄价值
int d[maxn]; //村庄的索引 添加的时候是从0到m-1 但是会排序 拍的序列就放到d
bool cmp(int i,int j)
{
return c[i] - b[i] > c[j] - b[j]; //价值减去防御的值来排序
}
int main()
{
int T;
scanf("%d",&T);
multiset<int > s;
while(T--)
{
s.clear();
memset(a,0,sizeof(a));
int n,m;
scanf("%d %d",&n,&m);
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
//同时按照从小到大的顺序插入multiset
s.insert(a[i]);
}
for(int i=0;i<m;i++)
{
scanf("%d %d",&b[i],&c[i]);
d[i] = i; //默认村庄排序从0到m-1
}
sort(a,a+n,greater<int>()); //士兵先按照降序排列
sort(d,d+m,cmp);
//从攻打村庄的价值 从高到低看能攻打多少个
int cnt = 0;
long long ans = 0;
multiset<int >::iterator it;
for(int i = 0; i < m; i++)
{
int id = d[i]; //通过d的索引到最大价值的村庄去 因为d是索引按照最大价值排序
it = s.upper_bound(b[id]);
if(it == s.end())
continue; //妄图以最小代价去获得最大价值 打不下来这个村庄
cnt ++;
ans += c[id] - b[id]; //攻打村庄后的价值 不算士兵的
s.erase(it);
}
for(int i=0;i<cnt && i<m;i++)
ans += a[i]; //得到我们最多能攻打的村庄数量,然后让攻击力最高的去攻打,获得最大利益
printf("%lld\n",ans);
}
return 0;
}