福州大学2271x——弗洛伊德最短路

3 篇文章 0 订阅
2 篇文章 0 订阅

福州大学2271x——弗洛伊德最短路

福州大学 Problem 2271 X

题意

  • N个城市,M条路,保证最开始是连通图。(N<=100)
  • 现在需要删除掉一些路,要保证删除后各个城市之间的距离不变(最短路径长度不变)
  • 尽可能得使得删除的路的条数更多。
  • 两个城市之间可能有多条路。

思路

  • 我们是要删除一些边,保证城市间最短路长度不变。
  • 首先两个城市间若有1条以上的路,那么必定是要删除。
  • 其次,我么可以用弗洛伊德最短路算法,算得各个城市之间的最短路径长度。然后我们考虑删除,原图中两个城市间有路并且大于两个城市的最短路,那么此边必定要删除。
  • 然后,因为题目是要尽可能删除更多的边,那么当存v1与v2的一条边u,u的长度等于v1与v2的最短路径长度且u!=此最短路,那么u就要被删除,因为要尽可能多删除。

AC代码

    #include<stdio.h>
    #include<iostream>
    #include<cmath>
    #include<cstring>
    #define inf 0x3f3f3f3f
    using namespace std;

    const int maxn = 110;
    int map[maxn][maxn];                //弗洛伊德用的图 由原图复制过来
    int cost[maxn][maxn];               //原图
    int vis[maxn][maxn];            
    int n,m;

    void flo()
    {
        int k,i,j;

        //Floyd-Warshall算法核心语句
        for(k=1; k<=n; k++)
            for(i=1; i<=n; i++)
                for(j=1; j<=n; j++)
                {
                    if(i == j)
                        continue;

                    if(map[i][j]>=map[i][k]+map[k][j] )
                    {
                        map[i][j]=map[i][k]+map[k][j];
                        vis[i][j] = 1;
                    }
                }

    }

    int main()
    {
        int T;
        scanf("%d",&T);
        int Case = 1;
        while(T--)
        {
            int ans1 = 0;
            int ans2 = 0;
            memset(vis,0,sizeof(vis));
            scanf("%d%d",&n,&m);

            //初始化为inf
            for(int i=1; i<=n; i++)
                for(int j=1; j<=n; j++)
                        cost[i][j]=inf;

            for(int i = 0; i < m ;i++)
            {
                int x,y,s;
                scanf("%d%d%d",&x,&y,&s);   
                if(cost[x][y] != 0 && cost[x][y] != inf)
                {
                    ans1 ++;             //一开始就要删除的边
                    cost[x][y] = min(cost[x][y],s); 
                    cost[y][x] = min(cost[y][x],s); 
                }   
                else 
                {
                    cost[x][y] = s;
                    cost[y][x] = s;
                }
            }

            //把cost边复制个给map,用于弗洛伊德算法。
            for(int i = 1; i <= n ;i++)
            {
                for(int j = 1; j <= n ;j++)
                {
                    map[i][j] = cost[i][j];
                }
            }

            flo();

            for(int i =1 ;i <= n ;i++)
            {
                for(int j = 1; j<= n ;j++)
                {
                    //有边
                    if(cost[i][j] != 0 && cost[i][j] != inf )
                    {
                        //大于最短路 删
                        if(map[i][j] < cost[i][j])
                        {
                            ans2++;
                        }

                        //等于最短路 并且标记要删除 删
                        else if(map[i][j] == cost[i][j] && vis[i][j] == 1)
                        {
                            ans2++;
                        }

                    }
                }
            }

            int ans = ans1 + ans2 / 2;   //因为是无向图所以ans2要除以2 ,会算两遍

            printf("Case %d: %d\n",Case++,ans); 
        }

        return 0;
    } 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值