CCF认证行车路线
描述:
小明和小芳出去乡村玩,小明负责开车,小芳来导航。小芳将可能的道路分为大道和小道。大道比较好走,每走1公里小明会增加1的疲劳度。小道不好走,如果连续走小道,小明的疲劳值会快速增加,连续走s公里小明会增加s2的疲劳度。例如:有5个路口,1号路口到2号路口为小道,2号路口到3号路口为小道,3号路口到4号路口为大道,4号路口到5号路口为小道,相邻路口之间的距离都是2公里。如果小明从1号路口到5号路口,则总疲劳值为(2+2)^2+2+2^2=16+2+4=22。现在小芳拿到了地图,请帮助她规划一个开车的路线,使得按这个路线开车小明的疲劳度最小。
输入:
输入的第一行包含两个整数n, m,分别表示路口的数量和道路的数量。路口由1至n编号,小明需要开车从1号路口到n号路口。接下来m行描述道路,每行包含四个整数t, a, b, c,表示一条类型为t,连接a与b两个路口,长度为c公里的双向道路。其中t为0表示大道,t为1表示小道。保证1号路口和n号路口是连通的。
输出:
输出一个整数,表示最优路线下小明的疲劳度。
输入样例:
6 7
1 1 2 3
1 2 3 2
0 1 3 30
0 3 4 20
0 4 5 30
1 3 5 6
1 5 6 1
样例输出:
76
思路:
- 题目中的疲劳度,可以当做距离。大路的长度是固定的,小路的长度与连续行驶的小路距离有关。
- 数据规模,共有最多500个点,那么可以用dijkstra求最短路的思路来求解。
- 最原始的dijkstra是点与点之间的长度不变,这里我们就需要考虑长度的变化。可以设一个数组
xiaolu[i]
,表示到第i个点时已经连续行驶了多长的小路。分类讨论,如果此条路是大路,那么与原始dijkstra一样。如果此条路是小路,那么就要看来的那个点是否从也是从小路过来的,然后才更新最短距离。同时也要更新xiaolu[i]
。
源代码:
#include<iostream>