开源大模型对比

随着chatgpt诞生,开源大模型的也获得了突飞猛进的进展,值得关注的是国内本地私有大模型已经在很多真实的场景中落地,比如智能客服。美国的技术研发能力遥遥领先,但是不得不说落地应用这块是我们的强项。企业使用大模型一般需要考虑数据隐私和安全的问题,所以一般会选择开源大模型在本地部署,然后通过微调大模型参数,让它适用企业的特殊场景。以下介绍几个比较常用的开源大模型,对比他们的特点和使用场景。

模型名称优点缺点适用场景
ChatGLM-3强大的语言理解能力
适用于多轮对话
支持中英双语
需要较大的计算资源
可能存在偏见和误解
对话系统
客户服务
语言翻译
LLaMA-3小型模型尺寸
良好的语言生成能力
适用于资源受限环境
在复杂任务上可能不如大型模型语言生成
文本摘要
情感分析
Qinwen2中文语言模型
支持中文方言和古文
对非中文语境支持有限
需要针对方言优化
中文文本处理
中文语言教学
中文文学创作
DeepSeek-v2问答系统专精
理解复杂问题
精确信息检索
非结构化数据检索局限
需要大量训练数据
知识问答
信息检索
教育辅助
Vicuna13-B多语言支持
上下文理解能力
高计算资源需求
特定任务可能非最优
多语言处理
跨领域问答
Mistral 7B生成能力和多样性好
适合生成任务
在理解任务上可能不足
显存需求可能限制部署
文本生成
创意写作辅助
Yi-34B-Chat优秀的对话生成能力
适合复杂对话任务
高计算资源需求
对非对话任务效率不高
对话系统
多轮对话应用
phi广泛的语言理解和生成能力
适合多种NLP任务
特定任务需额外微调
硬件资源要求可能较高
通用NLP
文本生成
问答系统
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值