前言
对于AIGC的初学者, 你一定想尝试在本地搭建一个私有的开源大模型,比如常见的chatglm、llama或者qwen。在实践过程你会发现,每个模型单独配置环境,下载模型文件,还要确保它们互不干扰。这不仅耗时耗力,还容易出错。每次部署一个新的大模型,都像是在进行一场没有硝烟的战争。 是不是有一个工具可以简单高效在本地轻松搭建不同类型的大模型呢,答案是有的。常见的这类工具有ollama、LocalLLM和LM studio。以Ollama为例,我们可以通过Ollama轻松地部署和管理多个大模型,无需为每个模型单独配置环境。
Ollama、LocalLLM、LM Studio对比
只要有多个选择,就会有选择困难症,下面一个表格通过优点、缺点、适用场景、适用人群的几个角度,对比他们的不同。
特点 | Ollama | LocalLLM | LM Studio |
---|---|---|---|
优点 | - 安装便捷,支持多种操作系统和Docker镜像。 - 提供多种预训练模型,支持快速部署。 - 开源,社区活跃,支持丰富。 | 支持广泛的开源模型,可自定义训练。 - 硬件要求低,支持CPU环境运行。 - 性能优化灵活,用户可根据需求进行优化。 | - 功能全面,提供模型训练、评估和部署的完整工具组合。 - 用户界面友好,适合初学者和非技术人员。 - 支持多种模型格式,与Hugging Face深度集成。 |
缺点 | - 模型支持范围受限于Ollama官方支持的模型。 - 性能受限于本地计算资源。 - 扩展性有限,大规模应用场景下扩展能力不足。 | - 部署需要一定技术能力,用户需要熟悉Docker和命令行工具。 - 性能表现取决于所选模型和用户优化程度。 | - 完全掌握较难,功能复杂,上手容易但精通难。 - 构建和训练复杂模型需要较多计算资源和专业技能。 - 仅支持桌面环境,不适用于生产级部署。 |
适用场景 | - 个人开发者和小型团队快速构建本地运行的聊天机器人、文档摘要工具等应用。 - 中小型企业需要低成本、本地化智能客服或其他轻量级AI应用的场景。 | - 需要多样化模型选择和自定义训练的用户。 - 小型模型和自定义需求场景。 | - 科研和实际应用环境,适合需要详细分析和评估模型性能的研究人员。 - 创意写作、生成不同文本格式和探索模型的多元特性。 |
适用人群 | - 技术基础薄弱的用户。 - 习惯使用命令行界面的开发者和技术熟练者。 | - 需要更多定制化和多模型支持的用户。 - 技术团队。 | - 初学者、非技术人员。 - 需要进行模型训练和评估的研究人员。 |
总结
如果你只是想玩一下大模型,不打算生产环境中部署大模型,选择LLM studio。如果你既想学习又想以后再生产环境中运行本地大模型,同时你的电脑有高配置的显卡,我推荐你使用ollama工具,它的优点显而易见,开源、简单易用、跨平台,学习和生产都能用,同时被绝大多数agent工作流平台支持。