快速幂相较于普通的幂,具有占用空间少,效率更高等优点,全面碾压普通的幂。
在计算量较小时,二者相差无几,但数据规模一旦上来了,差距也就出来了。
所以,我们重点讲解快速幂
首先给出一个问题
给定 a,b,p 求a^b%p的值 1<a,b,p<
方法一(朴素):
讲道理,我们先把普通的朴素代码展示出来。从简单入手:
#include<cstdio>
unsigned long long a,b,p,x=1;
int main(){
scanf("%llu %llu %llu",&a,&b,&p);
for(int i=1;i<=b;i++){
x=x*a%p;
}
printf("%llu",x);
return 0;
}
能看懂吧!有人会问那最后的答案为什么会是x,那是因为我们在计算a^b时已经插入了取模运算,如下:
(a^b)mod p
=(a*a*a*a.....*a*a*a*a) mod p
=a mod p * a mod p * a mod p * a mod p ....... * a mod p
(一个无限套娃)
我们这样做的目的,就是避免大数相乘溢出数据范围