C++快速幂详解

本文详细介绍了C++中快速幂算法的实现,通过对比朴素方法和位运算方法,阐述快速幂在处理大数乘法时的优势,避免溢出并减少计算量。文章提供了代码示例,并鼓励读者进行实践。
摘要由CSDN通过智能技术生成

快速幂相较于普通的幂,具有占用空间少,效率更高等优点,全面碾压普通的幂。

在计算量较小时,二者相差无几,但数据规模一旦上来了,差距也就出来了。

所以,我们重点讲解快速幂


首先给出一个问题


给定 a,b,p 求a^b%p的值          1<a,b,p<10^{9}


方法一(朴素):

讲道理,我们先把普通的朴素代码展示出来。从简单入手:

#include<cstdio>
unsigned long long a,b,p,x=1;
int main(){
	scanf("%llu %llu %llu",&a,&b,&p);
	for(int i=1;i<=b;i++){
		x=x*a%p;
	}
	printf("%llu",x);
	return 0;
}

能看懂吧!有人会问那最后的答案为什么会是x,那是因为我们在计算a^b时已经插入了取模运算,如下:

(a^b)mod p

=(a*a*a*a.....*a*a*a*a) mod p

=a mod p * a mod p * a mod p * a mod p ....... * a mod p

(一个无限套娃)

我们这样做的目的,就是避免大数相乘溢出数据范围

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

感谢有你陪伴

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值