倍投法则,求赢m块概率

题目

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod = 998244353;
ll qpow(ll a, ll p)
{
	ll res = 1;
	while (p)
	{
		if (p & 1)
			res = res * a % mod;
		a = a * a % mod;
		p >>= 1;
	}
	return res;
}
int main()
{
	ll n, m, i, j, res = 1, cnt;
	cin >> n >> m;
	for (i = 1; i <= m;)//把输输……输赢为一轮,每一轮赢一元,总共要进行m轮
	{

		ll k = __lg(n + i);//在有n + i元的情况下,最多连输的次数
		ll p = (1LL - qpow((1LL << k) % mod, mod - 2) + mod) % mod;//1 - 1 / (2 ^ k)为一轮可以赢一块的概率
		ll cnt = min((1LL << (k + 1)) - 1, n + m) - (n + i) + 1;//cnt为k值相同的轮数,一起算,不然TLE
		res = res * qpow(p, cnt) % mod;
		i += cnt;//跳着算
	}
	cout << res;

	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

__night_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值