Codeforces Round 837 (Div. 2) C. Hossam and Trainees

这篇文章描述了一个C++程序,用于判断给定一组整数,是否存在不超过sqrt(1e9)的素数可以将它们完全质因数分解。如果存在,输出Yes,否则输出No。
摘要由CSDN通过智能技术生成

题目

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define pb push_back
#define fi first
#define se second
#define lson p << 1
#define rson p << 1 | 1
const int maxn = 1e6 + 5, inf = 1e9, maxm = 4e4 + 5;
const int N = sqrt(1e9) + 1;
 const int mod = 1e9 + 7;
// const int mod = 998244353;
//const __int128 mod = 212370440130137957LL;
// int a[505][5005];
// bool vis[505][505];

int a[maxn], b[maxn];
bool vis[maxn];
string s;
int n, m;

struct Node{
    int val, id;
    bool operator<(const Node &u)const{
        return val < u.val;
    }
};
// Node c[maxn];

int ans[maxn];
int pre[maxn];
vector<int> prime;

//long long ? maxn ?
void solve(){
    int res = 0;
    int q, k;
    cin >> n;
    // int mx = 0, mn = inf;
	for(int i = 1; i <= n; i++){
		cin >> a[i];
	}
    set<int> S;
    for(int i = 1; i <= n; i++){//先把sqrt(1e9)的素数筛出来,再进行质因数分解,不然会超时
        for(auto x : prime){
            if(a[i] % x == 0){
                if(S.count(x)){
                    cout << "Yes\n";
                    return;
                }
                S.insert(x);
                while(a[i] % x == 0){
                    a[i] /= x;
                }
            }
        }
        if(a[i] > 1){
            if (S.count(a[i])){
                cout << "Yes\n";
                return;
            }
            S.insert(a[i]);
        }
    }
    cout << "No\n";
}
    
signed main(){
    ios::sync_with_stdio(0);
    cin.tie(0);
    //素数筛
    for(int i = 2; i <= N; i++){
        if(!vis[i]){
            prime.pb(i);
        }
        for(int j = 2 * i; j <= N; j += i){
            vis[j] = 1;
        }
    }

    int T = 1;
    cin >> T;
    while (T--)
    {
        solve();
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

__night_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值