广度优先搜索与深度优先搜索

深广搜(深搜不太熟练)

广度优先搜索

比如就像下面这张图,起点是1,从1开始向与1相邻的单位扩张(就像从圆心发散的雷达),当与1相邻的单位全部都标记(为2)时,那么就开始下一层搜索,就是标记所有与标记为2的单位相邻的单位(记为3)而这里与2相邻的有3也有1,所以在标记的时候我们需要有一个量来判断这个单位是否被标记。即标记之前,需要加入可标记的条件。一般的条件会有边界(0到n之类的),是否被标记, 是否符合题目中所含的判定条件。
在这里插入图片描述
值得注意的是这里的单位所在的空间不仅限制在二维, 可多维。

一下以三维广搜为例(记一下模板就好)

题目来源poj Dungeon Master
大致意思就是三维空间走迷宫,从S走到E可以走到就输出时间,不能则~

//三维广搜
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<algorithm>
#include<queue>

using namespace std;

const int N = 210;
const int M = 10;
const int inf = 0x3f3f3f3f;

char maze[33][33][33];
int mz[M] = {1, -1, 0, 0, 0, 0};
int mx[M] = {0, 0, 1, -1, 0, 0};
int my[M] = {0, 0, 0, 0, 1, -1};

struct QAQ {
    int lx, ly, lz;
} st, ed, tt;

int v[33][33][33];


int main() {
    int z, x, y;//z为层(竖轴),x为列(横轴), y为行(纵轴);
    while (scanf("%d %d %d", &z, &y, &x) != EOF) {
        if (z == 0 && y == 0 && x == 0)break;
        getchar();
        for (int i = 0; i < z; i++) {
            for (int j = 0; j < y; j++) {
                scanf("%s", maze[i][j]);
                getchar();
            }
            getchar();
        }
        for (int i = 0; i < z; i++) {
            for (int j = 0; j < y; j++) {
                for (int k = 0; k < x; k++) {
                    if (maze[i][j][k] == 'S') {
                        st.lz = i, st.ly = j, st.lx = k;
                    }
                    if (maze[i][j][k] == 'E') {
                        ed.lz = i, ed.ly = j, ed.lx = k;
                    }
                }
            }
        }
        //
        queue<QAQ> q;
        memset(v, -1, sizeof v);
        v[st.lz][st.ly][st.lx] = 0;
        q.push(st);
        while (!q.empty()) {
            st = q.front();
            q.pop();
            for (int i = 0; i < 6; i++) {
                tt.lz = st.lz + mz[i];
                tt.ly = st.ly + my[i];
                tt.lx = st.lx + mx[i];
                if (tt.lz < z && tt.lz >= 0 && tt.ly < y && tt.ly >= 0
                && tt.lx < x && tt.lx >= 0&& maze[tt.lz][tt.ly][tt.lx] == '.'
                && v[tt.lz][tt.ly][tt.lx] <0||maze[tt.lz][tt.ly][tt.lx]=='E') {
                    v[tt.lz][tt.ly][tt.lx] = v[st.lz][st.ly][st.lx] + 1;
                    q.push(tt);
                }
            }
        }
        //
//        for (int i = 0; i < z; i++) {
//            for (int j = 0; j < y; j++) {
//                for (int k = 0; k < x; k++) {
//                    printf("%d ", v[i][j][k]);
//                }
//                printf("\n");
//            }
//            printf("\n");
//        }
        if (v[ed.lz][ed.ly][ed.lx] == -1)printf("Trapped!\n");
        else printf("Escaped in %d minute(s).\n", v[ed.lz][ed.ly][ed.lx]);
    }
}

深度优先搜索

不太会运用但理解不太成问题,具体问题看下面代码,代码中会有详细解释

题目来源 HZNU_oj 1445 N皇后问题

//深搜,n皇后
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<algorithm>
#include<queue>

using namespace std;

const int N = 210;

int f[N], vis[N], n, cnt;//vis[i]i表示列vis[i]表示行

bool check(int row, int col){//col表示列,row表示行
    if(vis[col])return false;//如果这列标为col的这一行已经被前面的皇后的攻击范围行波及
    // 那么这里的vis[col]的值为1, 那么这一行不能放
    for(int i=1;i<=n;i++){
        if(vis[i]&&abs(i-col)==abs(vis[i]-row))
            //vis[i]表示这一行是否被前面的皇后行波及
            //第二个判定条件为当i列v[i]行在col列row行的对角线上时
            return false;
    }
    return true;
}

void dfs(int now){
    if(now==n+1){//因为递归传进来的是now+1所以这里的now=n+1实际上就是now=n,已经放好了n个皇后
        cnt ++;//情况+1
        return;//回到上一步dfs
    }
    for(int i=1;i<=n;i++){//从第一行往第n行放
        if(check(now, i)){//如果这一行没有被前面所放的皇后的攻击范围所波及
            vis[i]=now;//行更新
            dfs(now+1);//搜索下一行
            vis[i]=0;//返回之后这里的行归零,就是撤掉上一个位置皇后,
        }
    }
}

int main(){
    for(n=1;n<=10;n++){//预处理,将放1到10个皇后的情况下的方法预先处理出来存入n
        // 使得之后每读取一个数就不需要再次计算,减少运算时间
        memset(vis, 0, sizeof vis);
        cnt = 0;dfs(1);
        f[n]=cnt;
    }
    int x;
    while(scanf("%d", &x)!=EOF){//输入x直接得到n为x时的放置情况数
        if(x==0)break;
        printf("%d\n", f[x]);
    }
}

拓展

拓扑排序
二分图染色

			  									姑姑保佑

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值