深广搜(深搜不太熟练)
广度优先搜索
比如就像下面这张图,起点是1,从1开始向与1相邻的单位扩张(就像从圆心发散的雷达),当与1相邻的单位全部都标记(为2)时,那么就开始下一层搜索,就是标记所有与标记为2的单位相邻的单位(记为3)而这里与2相邻的有3也有1,所以在标记的时候我们需要有一个量来判断这个单位是否被标记。即标记之前,需要加入可标记的条件。一般的条件会有边界(0到n之类的),是否被标记, 是否符合题目中所含的判定条件。
值得注意的是这里的单位所在的空间不仅限制在二维, 可多维。
一下以三维广搜为例(记一下模板就好)
题目来源poj Dungeon Master
大致意思就是三维空间走迷宫,从S走到E可以走到就输出时间,不能则~
//三维广搜
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<algorithm>
#include<queue>
using namespace std;
const int N = 210;
const int M = 10;
const int inf = 0x3f3f3f3f;
char maze[33][33][33];
int mz[M] = {1, -1, 0, 0, 0, 0};
int mx[M] = {0, 0, 1, -1, 0, 0};
int my[M] = {0, 0, 0, 0, 1, -1};
struct QAQ {
int lx, ly, lz;
} st, ed, tt;
int v[33][33][33];
int main() {
int z, x, y;//z为层(竖轴),x为列(横轴), y为行(纵轴);
while (scanf("%d %d %d", &z, &y, &x) != EOF) {
if (z == 0 && y == 0 && x == 0)break;
getchar();
for (int i = 0; i < z; i++) {
for (int j = 0; j < y; j++) {
scanf("%s", maze[i][j]);
getchar();
}
getchar();
}
for (int i = 0; i < z; i++) {
for (int j = 0; j < y; j++) {
for (int k = 0; k < x; k++) {
if (maze[i][j][k] == 'S') {
st.lz = i, st.ly = j, st.lx = k;
}
if (maze[i][j][k] == 'E') {
ed.lz = i, ed.ly = j, ed.lx = k;
}
}
}
}
//
queue<QAQ> q;
memset(v, -1, sizeof v);
v[st.lz][st.ly][st.lx] = 0;
q.push(st);
while (!q.empty()) {
st = q.front();
q.pop();
for (int i = 0; i < 6; i++) {
tt.lz = st.lz + mz[i];
tt.ly = st.ly + my[i];
tt.lx = st.lx + mx[i];
if (tt.lz < z && tt.lz >= 0 && tt.ly < y && tt.ly >= 0
&& tt.lx < x && tt.lx >= 0&& maze[tt.lz][tt.ly][tt.lx] == '.'
&& v[tt.lz][tt.ly][tt.lx] <0||maze[tt.lz][tt.ly][tt.lx]=='E') {
v[tt.lz][tt.ly][tt.lx] = v[st.lz][st.ly][st.lx] + 1;
q.push(tt);
}
}
}
//
// for (int i = 0; i < z; i++) {
// for (int j = 0; j < y; j++) {
// for (int k = 0; k < x; k++) {
// printf("%d ", v[i][j][k]);
// }
// printf("\n");
// }
// printf("\n");
// }
if (v[ed.lz][ed.ly][ed.lx] == -1)printf("Trapped!\n");
else printf("Escaped in %d minute(s).\n", v[ed.lz][ed.ly][ed.lx]);
}
}
深度优先搜索
不太会运用但理解不太成问题,具体问题看下面代码,代码中会有详细解释
题目来源 HZNU_oj 1445 N皇后问题
//深搜,n皇后
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<algorithm>
#include<queue>
using namespace std;
const int N = 210;
int f[N], vis[N], n, cnt;//vis[i]i表示列vis[i]表示行
bool check(int row, int col){//col表示列,row表示行
if(vis[col])return false;//如果这列标为col的这一行已经被前面的皇后的攻击范围行波及
// 那么这里的vis[col]的值为1, 那么这一行不能放
for(int i=1;i<=n;i++){
if(vis[i]&&abs(i-col)==abs(vis[i]-row))
//vis[i]表示这一行是否被前面的皇后行波及
//第二个判定条件为当i列v[i]行在col列row行的对角线上时
return false;
}
return true;
}
void dfs(int now){
if(now==n+1){//因为递归传进来的是now+1所以这里的now=n+1实际上就是now=n,已经放好了n个皇后
cnt ++;//情况+1
return;//回到上一步dfs
}
for(int i=1;i<=n;i++){//从第一行往第n行放
if(check(now, i)){//如果这一行没有被前面所放的皇后的攻击范围所波及
vis[i]=now;//行更新
dfs(now+1);//搜索下一行
vis[i]=0;//返回之后这里的行归零,就是撤掉上一个位置皇后,
}
}
}
int main(){
for(n=1;n<=10;n++){//预处理,将放1到10个皇后的情况下的方法预先处理出来存入n
// 使得之后每读取一个数就不需要再次计算,减少运算时间
memset(vis, 0, sizeof vis);
cnt = 0;dfs(1);
f[n]=cnt;
}
int x;
while(scanf("%d", &x)!=EOF){//输入x直接得到n为x时的放置情况数
if(x==0)break;
printf("%d\n", f[x]);
}
}
拓展
拓扑排序
二分图染色
姑姑保佑