地理空间数据云 如何预约下载数据 Landsat8

地理空间数据云预约下载最新Landsat8遥感影像数据

纯新手教学向

想要登录USGS下载数据,可是总也打不开网页,最后还是老老实实的来地理空间数据云预约数据了

之前想下载最新数据,找了半天怎么预约,网上也没有搜到教程,可能是太简单了吧,但是对于刚入门的新手,真的很想问这个问题

预约下载Landsat8-OLI数据

地理空间数据云:http://www.gscloud.cn/

  1. 查询数据 ,从公开数据中直接查询;
    在这里插入图片描述

  2. 输入自己想要的数据的相关信息;查询
    在这里插入图片描述

  3. 找到你想要的数据,点击收藏
    在这里插入图片描述

  4. 回到个人界面;找到我的下载目录下的需预定数据,即可找到刚才收藏的数据
    在这里插入图片描述

  5. 选中想要预定的数据;点击批量预定;出现任务名称后点击确认
    在这里插入图片描述

  6. 然后就是漫长的等待了;
    在这里插入图片描述

### 关于Landsat 8 地理空间数据云预处理的方法 #### 下载与初步准备 为了有效地进行 Landsat 8 数据的预处理工作,首先需要从官方渠道下载所需的数据集。美国地质勘探局(USGS)提供了详细的指导说明来帮助用户获取这些影像资料[^1]。 #### 波段组合与图像增强 完成数据下载之后的一个重要环节是对原始文件执行必要的转换操作,比如创建真彩色或假彩色合成图。这一步骤有助于提高视觉效果并更好地理解所分析的内容。对于 Landsat 8 来说,通常会涉及到红光、近红外等多个特定波段的选择和组合。 #### 大气校正过程 大气校正是遥感数据分析中的关键步骤之一,它能够去除由空气分子散射等因素引起的影响,从而获得更精确的地表反射率信息。针对不同地区的特点,在 ENVI 软件中可以根据具体位置选取合适的大气模型;例如,可以采用 MODTRAN 模型来进行此修正,并且 Aerosol Model 的选择取决于研究区的具体情况,如乡村或城市的环境特征[^3]。 #### 去除云层干扰 由于卫星成像过程中不可避免地受到天气条件影响而产生的云覆盖问题,因此有必要采取措施消除这种不利因素带来的误差。在 Python 中借助 eemont 和 geemap 库可以在一定程度上自动识别并剔除含有多量云朵像素的部分,进而提升最终成果的质量[^2]。 ```python import ee from eemont import ImageCollection, MaskCloudsParams # 初始化 Earth Engine API ee.Initialize() # 加载 Landsat 9 图像集合 dataset = (ImageCollection('LANDSAT/LC09/C02/T1_L2') .filterDate('2022-01-01', '2022-12-31')) # 设置掩膜参数以移除云及其阴影 masked_dataset = dataset.maskClouds(MaskCloudsParams()) print(masked_dataset.getInfo()) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值