自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 基于风云卫星数据的海冰密集度产品处理

本实验基于风云卫星数据开展海冰密集度产品处理,通过风云卫星遥感数据服务网获取FY-3C卫星观测数据。实验详细介绍了风云系列卫星的技术参数,包括轨道类型、高度等关键指标。使用wget工具下载HDF5格式的海冰数据后,通过MATLAB进行数据处理和可视化分析,采用极地立体投影展示北极海冰覆盖度分布。实验重点演示了剔除无效数据、坐标转换和地图投影等关键技术环节,最终生成包含颜色映射的海冰密集度专题图。该研究为极地环境监测和气候变化分析提供了有效的数据处理方法和技术支持。

2025-09-03 20:29:07 535

原创 GOCI数据的认识与可视化

本实验围绕GOCI(地球静止轨道海洋水色成像仪)数据的获取、处理与应用展开,主要包括三部分内容:数据获取、可视化处理及实际应用分析。实验通过MATLAB工具从韩国海洋卫星中心官网批量下载GOCI2 L1B级数据,并完成数据完整性检查和质量控制。在可视化处理环节,采用RGB合成和多波段子图展示数据空间分布特征,验证了GOCI数据500米空间分辨率和每小时多次观测的时间分辨率优势。最后以悬浮泥沙监测为例,生成浓度空间分布图和时间变化图,结果显示有效像元比例达99.2%,证实GOCI数据在检测应用中的有效性。

2025-09-03 20:18:51 499

原创 多源遥感数据驱动的海洋叶绿素a浓度反演与生态应用

本文综述了叶绿素a遥感监测的研究进展与典型案例。叶绿素a作为浮游植物的关键指标,对评估海洋生态、碳循环等具有重要意义。研究比较了国内外主要卫星传感器(如MODIS、Sentinel-2、Landsat等)及反演方法(经验算法、半分析模型、机器学习等)的适用性。通过三个案例(广东海域MODIS数据反演、柘林湾Sentinel-2监测、珠江口神经网络模型)展示了不同方法的精度与局限,指出机器学习(如XGBoost)在复杂水体中表现更优。未来需结合多源数据提高时空分辨率,并加强环境因素的综合分析。

2025-09-03 20:00:13 527

原创 熟悉下载遥感数据过程并了解其特征——以下载武汉市Landsat数据为例

我下载的是2017年10月30日湖北省武汉市Landsat 8-9 OLI/TIRS C2 L2卫星数据。下载网址与下载过程①网址:地理空间数据云(地理空间数据云)②下载过程:1、注册及登录:首先在地理空间数据云平台注册一个账户,完成注册后,登录账户。2、搜索数据:在主界面,使用高级检索,选择按行政区划来检索,搜索框输入“湖北省武汉市”,数据集选择“Landsat 8-9 OLI/TIRS C2 L2”,确认后进行检索。3、选择数据集:可以通过设定指定时间范围与数据含云量来缩小搜索结

2025-09-03 19:40:49 2491 3

原创 不规则采样点的DEM内插计算

然而,从结果来看,任务二得到的高程值“5.21133e+06”可能存在一些异常,与常规的高程数值范围相比,这个数值过高,可能是由于计算过程中的精度问题或者数据本身的特性导致的。任务二则在任务一的基础上,找到距离内插点最近的8个采样点,建立曲面模型并通过C++编程求解出模型参数,进而得到指定内插点的高程值。

2025-04-12 14:06:15 1060

原创 使用ENVI软件进行遥感图像几何校正

误差最高的匹配点显示在表格顶部,可以直观的查看误差最大的匹配点,找到匹配点列表中精确度较低的匹配点点号,右键点击【Delete Tie Point】进行删除。1)【Geometric Correction】→【Georeference from IGM】,弹出【Input Data File】对话框,选择“cup99hy_true.img”文件,弹出【Input X Geometry Band】对话框,选择【IGM Input X Map】,弹出【Input Y Geometry Band】;

2025-04-12 13:54:06 3121

原创 使用ENVI软件进行遥感图像辐射校正

放大图像,仔细观察发现,原始影像中植被区域的空间分布不够明显,因为亮度和对比度较低,辐射定标后的影像中植被区域的空间分布更加明显,植被区域的边界和内部结构更加清晰。点击【Course Value】,查看图像中特定像素点的DN值,发现原始影像植被区域的亮度值主要集中在较低的DN值范围内,植被区域在影像中相对较暗。大气校正后的光谱曲线更加精细,反映了地物的真实光谱特性,反射率较高,特征更加明显,特别是绿峰和红谷的特征更加突出,近红外波段反射更加平坦,能够更准确地表示植被等地物的光谱特征。

2025-04-12 13:33:59 1871 3

原创 ENVI遥感数字图像处理之空间域处理方法实践——以提取武汉市NDVI和计算植被覆盖度FVC为例

2、输入公式:(b1 lt -0.048644)*0+(b1 gt 0.418479)*1+(b1 ge -0.048644 and b1 le 0.418479)*((b1+0.048644)/(0.418479+0.048644)) 并设置输出路径;公式:(b1 lt -1)*(-1)+(b1 gt 1)*1+(b1 ge -1 and b1 le 1)*b1。3、选择保存路径并检验NDVI结果,随机选取影像中水域的地方,可以看到数据值为负,结果较为准确;6、然后按分类标准进行分类。

2024-09-20 16:06:30 4394 7

原创 【遥感解译实验】利用ENVI绘制遥感影像监督分类专题图,并利用混淆矩阵进行精度评价——基于Landsat5TM影像的LUCC信息提取

此次遥感影像监督分类的实践经历,不仅让我巩固了课堂上学到的理论知识,还使我熟练掌握了使用ENVI软件进行遥感影像监督分类的具体步骤,并认识到监督分类在遥感影像处理中的关键作用。例如,采用波段组合4、3、2的影像,林地呈现深红色,草地为深紫色,而耕地则呈现粉红色,这有助于我们进行精准的分类。当影像中的地物种类普遍且光谱特征差异不大时,监督分类尤为适用,它能有效地提取常见地物,如土地类型、植被覆盖、森林、农田、道路、水体和沙漠等,广泛应用于城市规划、土地管理和道路网络建设等领域。(3)计算样本的可分离性。

2024-09-11 20:46:15 4315

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除