mahout的trainnb调用的是TrainNaiveBayesJob完成训练模型任务。所在包:
org.apache.mahout.classifier.naivebayes.training
TrainNaiveBayesJob的输入是在tfidf文件上split出来的一部分,用作训练。
TrainNaiveBayesJob代码分析,
首先加入一些命令行选项,如
LABEL -L ALPHA_I -a LABEL_INDEX -li TRAIN_COMPLEMENTARY -c
然后从输入文件中读取label,将label保存于label index,例如20news group的例子,读取的label有两个,label index如下
Key class: class org.apache.hadoop.io.Text Value Class: class org.apache.hadoop.io.IntWritable Key: 20news-bydate-test: Value: 0 Key: 20news-bydate-train: Value: 1
其实也就是将分类建一个索引。
接下来,将相同label的vectors相加。也就是将同一个类别的所有的文章的vector相加。这里vector其实是一个key/value vector,每项由词的id和tfidf值组成。这样相加后就是一个一个类的vector,相同id的tfidf相加,没有的则插入,类似两个递增的链表的合并。由一个job来完成:
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
// Key class: class org.apache.hadoop.io.Text
// Value Class: class org.apache.mahout.math.VectorWritable //add up all the vectors with the same labels, while mapping the labels into our index Job indexInstances = prepareJob (getInputPath ( ), //input path getTempPath (SUMMED_OBSERVATIONS ), //output path SequenceFileInputFormat. class, //input format IndexInstancesMapper. class, //mapper class IntWritable. class, //mapper key VectorWritable. class, //mapper value VectorSumReducer. class, //reducer class IntWritable. class, //reducer key VectorWritable. class, //reducer value SequenceFileOutputFormat. class ) ; //output format indexInstances. setCombinerClass (VectorSumReducer. class ) ; boolean succeeded = indexInstances. waitForCompletion ( true ) ; if ( !succeeded ) { return - 1 ; } |
Mapper为IndexInstancesMapper,Reducer为Reducer VectorSumReducer,代码也比较简单,如下,
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
protected
void map
(Text labelText, VectorWritable instance,
Context ctx
)
throws
IOException,
InterruptedException
{
String label = labelText. toString ( ). split ( "/" ) [ 1 ] ; if (labelIndex. containsKey (label ) ) { //从文件中读取的类的index作为key ctx. write ( new IntWritable (labelIndex. get (label ) ), instance ) ; } else { ctx. getCounter (Counter. SKIPPED_INSTANCES ). increment ( 1 ) ; } } //相同key的vector相加 protected void reduce (WritableComparable < ? > key, Iterable < VectorWritable > values, Context ctx ) throws IOException, InterruptedException { Vector vector = null ; for (VectorWritable v : values ) { if (vector == null ) { vector = v. get ( ) ; } else { vector. assign (v. get ( ), Functions. PLUS ) ; } } ctx. write (key, new VectorWritable (vector ) ) ; } |
OK,到现在已经得到了< label_index,label_vector >,即类的id和类中所有item(或者说feature)的TFIDF值。此步得到类似如下的输出,
Key: 0 Value: /comp.sys.ibm.pc.hardware/60252:{93562:17.52922821044922,93559:9.745443344116211,93558:107.53932094573975,93557:49.015570640563965,93556:9.745443344116211……} key:1 Value: /alt.atheism/53261:{93562:26.293842315673828,93560:19.490886688232422,93559:9.745443344116211,93558:78.52010536193848,93557:62.2713, 93555:14.35555171……}
下一个阶段就是统计每个label的所有ITIDF和,输入为上一步的输出,并由一个job来执行,
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
//sum up all the weights from the previous step, per label and per feature
Job weightSummer = prepareJob (getTempPath (SUMMED_OBSERVATIONS ), getTempPath (WEIGHTS ), SequenceFileInputFormat. class, WeightsMapper. class, Text. class, VectorWritable. class, VectorSumReducer. class, Text. class, VectorWritable. class, SequenceFileOutputFormat. class ) ; weightSummer. getConfiguration ( ). set (WeightsMapper. NUM_LABELS, String. valueOf (labelSize ) ) ; weightSummer. setCombinerClass (VectorSumReducer. class ) ; succeeded = weightSummer. waitForCompletion ( true ) ; if ( !succeeded ) { return - 1 ; } |
job的mapper为WeightsMapper,reducer与上一步的相同,为VectorSumReducer。
mapper如下,
1
2 3 4 5 6 7 8 9 |
protected
void map
(IntWritable index, VectorWritable value,
Context ctx
)
throws
IOException,
InterruptedException
{
Vector instance = value. get ( ) ; if (weightsPerFeature == null ) { weightsPerFeature = new RandomAccessSparseVector (instance. size ( ), instance. getNumNondefaultElements ( ) ) ; } int label = index. get ( ) ; weightsPerFeature. assign (instance, Functions. PLUS ) ; weightsPerLabel. set (label, weightsPerLabel. get (label ) + instance. zSum ( ) ) ; } |
此步的输出写在cleanup()中。
1
2 3 4 5 6 7 8 9 |
protected
void cleanup
(
Context ctx
)
throws
IOException,
InterruptedException
{
if (weightsPerFeature != null ) { ctx. write ( new Text (TrainNaiveBayesJob. WEIGHTS_PER_FEATURE ), new VectorWritable (weightsPerFeature ) ) ; ctx. write ( new Text (TrainNaiveBayesJob. WEIGHTS_PER_LABEL ), new VectorWritable (weightsPerLabel ) ) ; } super. cleanup (ctx ) ; } |
也就是说输出只有两个key/value.
一个是WEIGHTS_PER_FEATURE(定义的常量,__SPF)
一个是WEIGHTS_PER_LABEL(__SPL)
weightsPerFeature其实就是保持上一步的vector没变,仍然是一个类中所有iterm(feature)的TFIDF。
weightsPerLabel就是求每个label中的和了。
可以看到输出为,
Key: __SPF Value: {93562:43.82307052612305,93560:19.490886688232422,93559:19.490886688232422,93558:186.05942630767822,93557:111.28696632385254,93556:9.745443344116211……} Key: __SPL Value: {1:7085520.472989678,0:4662610.912284017}
最后一步,先看源代码,
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
//calculate the Thetas, write out to LABEL_THETA_NORMALIZER vectors
//-- TODO: add reference here to the part of the Rennie paper that discusses this Job thetaSummer = prepareJob (getTempPath (SUMMED_OBSERVATIONS ), getTempPath (THETAS ), SequenceFileInputFormat. class, ThetaMapper. class, Text. class, VectorWritable. class, VectorSumReducer. class, Text. class, VectorWritable. class, SequenceFileOutputFormat. class ) ; thetaSummer. setCombinerClass (VectorSumReducer. class ) ; thetaSummer. getConfiguration ( ). setFloat (ThetaMapper. ALPHA_I, alphaI ) ; thetaSummer. getConfiguration ( ). setBoolean (ThetaMapper. TRAIN_COMPLEMENTARY, trainComplementary ) ; /* TODO(robinanil): Enable this when thetanormalization works. succeeded = thetaSummer.waitForCompletion(true); if (!succeeded) { return -1; }*/ |
可以看到thetaSummer.waitForCompletion(true)被注释掉了,job没有执行。注释里面说的Rennie paper指的就是mahout bayes算法参考的这篇论文:Tackling the Poor Assumptions of Naive Bayes Text Classifiers,论文里面有个求Ɵ的公式如下。不知为何注释掉?求解。
最最后一步,其实model有weightsPerFeature和weightsPerLabel就完成了。这一步也就是把它们变成矩阵形式,如下,每行一个权重vector。
____|item1,iterm2,item3……
lab1|
lab2|
……
源代码如下,
1
2 3 4 5 |
//得到SparseMatrix矩阵
NaiveBayesModel naiveBayesModel = BayesUtils. readModelFromDir (getTempPath ( ), getConf ( ) ) ; naiveBayesModel. validate ( ) ; //序列化,写到output/naiveBayesModel.bin naiveBayesModel. serialize (getOutputPath ( ), getConf ( ) ) ; |
THE END
http://hnote.org/big-data/mahout/mahout-train-naive-bayes-job