AI驱动的轻量级笔记应用Blinko

在这里插入图片描述

什么是 Blinko ?

Blinko 是一个创新的开源项目,专为想要快速捕捉和整理瞬间想法的个人而设计。Blinko 允许用户在灵感迸发的瞬间无缝记录想法,确保不会错过任何创意火花。

Blinko 的设计初衷是让笔记记录变得更简单,让用户专注于内容本身,而不会被繁琐的管理任务所困扰。Blinko 帮助用户轻松捕捉和管理他们的想法,设计上分为两个核心部分:“闪念”“笔记”

“闪念” 专为记录灵光一闪而打造,用户无需担心格式或复杂操作,即可即刻记下即兴想法。这些记录可设置为每隔一段时间自动清除,确保内容不会过度堆积,从而保持该部分的整洁和高效。

“笔记” 部分提供了更有条理的管理系统,用户可以使用标签对笔记进行分类,并利用批量操作轻松地组织和分类大量笔记。

🚀主要功能:

  • AI 增强的笔记检索 🤖:借助 Blinko 的先进 AI 驱动的 RAG(检索增强生成)技术,您可以使用自然语言查询快速搜索和访问您的笔记,轻松找到所需内容。

  • 数据拥有权 🔒:您的隐私至关重要。所有笔记和数据都安全存储在您自托管的环境中,确保您对信息的完全控制。

  • 高效快速 🚀:即时捕捉想法,并以纯文本形式存储,方便访问,完全支持 Markdown 格式,便于快速格式化和无缝共享。

  • 轻量架构,强大性能 💡:基于 Next.js 构建,Blinko 提供流畅、轻量的架构,具备强大的性能,同时不牺牲速度或效率。

  • 开放协作 🔓:作为一个开源项目,Blinko 欢迎社区的贡献。所有代码透明且可在 GitHub 上获取,促进合作精神和持续改进。

  • 完全免费 🎉Blinko 是且将始终是免费的,没有隐藏费用或锁定在付费墙后的高级功能。

如果不想安装,可以去看看官方的 Live Demo

安装

在群晖上以 Docker 方式安装。

本文写作时, latest 版本对应为 0.0.26

采用 docker-compose 安装,将下面的内容保存为 docker-compose.yml 文件

version: '3'

services:
  blinko-website:
    image: blinkospace/blinko:latest
    container_name: blinko-website
    # restart: unless-stopped
    environment:
      NODE_ENV: production
      # NEXTAUTH_URL: http://localhost:1111
      # NEXT_PUBLIC_BASE_URL: http://localhost:1111
      NEXTAUTH_SECRET: my_ultra_secure_nextauth_secret
      DATABASE_URL: postgresql://postgres:mysecretpassword@postgres:5432/postgres
    depends_on:
      postgres:
        condition: service_healthy
    # Make sure you have enough permissions.
    volumes:
       - ./data:/app/.blinko 
    restart: always
    logging:
      options:
        max-size: "10m"
        max-file: "3"
    ports:
      - 1111:1111
    healthcheck:
      test: ["CMD", "curl", "-f", "http://localhost:1111/"]
      interval: 30s 
      timeout: 10s   
      retries: 5     
      start_period: 30s 

  postgres:
    image: postgres:14
    container_name: blinko-postgres
    restart: always
    # ports:
    #   - 5435:5432
    volumes:  
      - ./db:/var/lib/postgresql/data
    environment:
      POSTGRES_DB: postgres
      POSTGRES_USER: postgres
      POSTGRES_PASSWORD: mysecretpassword
      TZ: Asia/Shanghai
    healthcheck:
      test:
        ["CMD", "pg_isready", "-U", "postgres", "-d", "postgres"]
      interval: 5s
      timeout: 10s
      retries: 5
  • 容器 blinko-postgres 的环境变量
可变
POSTGRES_DB指定要创建的数据库名称
POSTGRES_USER定义 PostgreSQL 数据库的用户名
POSTGRES_PASSWORD设置用于连接 PostgreSQL 数据库的密码
TZ设置时区
  • 容器 blinko-website 的环境变量
可变
NODE_ENV设置 Node.js 的运行环境。通常设为 production 用于生产环境
NEXTAUTH_URL指定 NextAuth.js 的回调 URL,用于处理身份验证。在生产环境中应更改为实际域名
NEXT_PUBLIC_BASE_URL公开的基础 URL,客户端可以访问,用于构建 API 请求的基础路径。在生产环境中也应设置为实际域名
NEXTAUTH_SECRET设置用于加密会话和生成 JWT 的秘密字符串
DATABASE_URL定义数据库连接字符串,用于连接 PostgreSQL 数据库。格式为 postgresql://用户名:密码@主机:端口/数据库名

然后执行下面的命令

# 新建文件夹 blinko 和 子目录
mkdir -p /volume1/docker/blinko/{data,db}

# 进入 blinko 目录
cd /volume1/docker/blinko

# 将 docker-compose.yml 放入当前目录

# 一键启动
docker-compose up -d

运行

在浏览器中输入 http://群晖IP:1111 就能看到登录界面

第一次需要点 Sign Up 注册账号

登录成功后的主界面

设置中文

Settings --> Language 中找到 简体中文

不需要刷新

现在回到 闪念,可以开始记录你的新想法

链接能够直接提取 title 等信息

支持右键菜单

手机上的效果相当哇塞

AI 驱动(失败)

默认情况下,AI 并没有启用

虽然 AI服务商 只能是 OpenAI,但因为可以输入 接口地址,所以老苏打算用其他的 AI 来模拟 OpenAI

文章传送门:

  • 使用 Blinko ai :启用;
  • AI 服务商:只能选 OpenAI
  • 人工智能模型:选择 gpt-3.5-turbo,因为 One API 中模型只设置了 kimigpt-3.5-turbo
  • API Key:用 One API 的令牌;
  • 接口地址:用 One API 的地址;但是要注意,要求必须用 https 开头,格式为 https://域名/v1

设置完成后

回到首界面,右下角会多出一个图标

但是聊天时,返回了错误

Error: Error: Error: 503 当前分组 default 下对于模型 text-embedding-ada-002 无可用渠道 (request id: 2024111016093058572008963658571)

说明还需要用到 Embedding 模型。继续用 M3E 来模拟 text-embedding-ada-002

文章传送门:开源文本嵌入模型M3E

这次返回了另一个错误

Error: Error: 422 bad response status code 422 (request id: 2024111017481662117653978385149)

M3E 容器中的日志更明确

172.17.0.1:33778 - "POST /v1/embeddings HTTP/1.1" 422 Unprocessable Entity

说明请求的格式正确,但是由于含有语义错误无法响应。看来虽然都是嵌入式模型,但两者存在差异。

暂时没想到怎么解决这个问题,或者等待作者支持其他的 AI模型吧。

即便暂时用不上 AI 搜索,Blinko 从设计理念上,也不失为一款很好的轻量级笔记软件。

参考文档

blinko-space/blinko: An open-source, self-hosted personal note tool prioritizing privacy, built using TypeScript .
地址:https://github.com/blinko-space/blinko

Blinko HomePage
地址:https://blinko-doc.vercel.app/

Blinko live demo
地址:https://blinko-demo.vercel.app

### 回答1: 对于您的问题,我可以很高兴地回答。小型人工智能(AI)在轻量级应用中具有很大潜力。这是因为小型AI可以在嵌入式设备和移动设备中操作,而不需要大量的计算和存储资源。这意味着它们可以用于许多应用领域,例如智能家居,物联网设备,移动应用,智能医疗,安防系统等。此外,小型AI还具有更快的速度和更低的能源成本,因此可以更好地适应未来的需求。总之,小型AI的前景非常广阔,可以应用于各种轻量级应用场景。 ### 回答2: 小模型人工智能在轻量级应用方面具有广阔的前景。首先,小模型人工智能可以在嵌入式设备上进行高效的运算,实现智能化的功能。例如,智能家居设备可以通过小模型人工智能实现语音控制、图像识别等功能,使得家居更加智能化和便捷化。 其次,小模型人工智能可以应用于医疗领域。例如,通过小模型人工智能可以实现快速并准确的疾病诊断,帮助医生提高工作效率和诊断准确性。同时,小模型人工智能还可以用于监测患者的生理指标,及时发现异常情况并提供预警,为医疗机构提供更好的健康管理服务。 此外,小模型人工智能还可以用于智能交通系统中。通过小模型人工智能可以实现快速的交通流量检测和预测,提供更准确的交通信息和路况推荐。同时,小模型人工智能还可以应用于车辆自动驾驶系统,实现更安全和高效的交通出行。 另外,小模型人工智能还可以应用于智能推荐系统。通过小模型人工智能可以分析用户的偏好和行为,精准地推荐用户感兴趣的内容和产品,提供更好的用户体验和个性化的服务。 综上所述,小模型人工智能在轻量级应用方面具有巨大的潜力和前景。它可以应用于智能家居、医疗、智能交通、智能推荐等领域,为人们的生活和工作带来更多的便利和效益。 ### 回答3: 小模型人工智能在轻量级应用的前景非常广阔。首先,小模型人工智能具有较小的体积和运算速度,适合嵌入式设备和移动设备上的应用。这意味着小模型人工智能可以在智能手机、智能家居设备、智能穿戴设备等轻量级设备上实现智能化的功能,如语音识别、图像识别、人脸识别等。 其次,小模型人工智能还可以应用于边缘计算。边缘计算是指将数据处理和分析的能力从云端延伸到离用户更近的边缘设备上。小模型人工智能可以在边缘设备上进行实时的数据处理和模型推理,避免了数据传输的延迟和带宽压力,提高了响应速度和隐私保护。 此外,小模型人工智能还可以广泛应用于医疗、交通、物流等领域的轻量级应用中。例如,在医疗领域,小模型人工智能可以应用于远程医疗、智能疾病诊断等,帮助医生实现更准确的诊断和治疗方案;在交通领域,小模型人工智能可以应用于交通监控、智能交通信号灯等,提高交通流量的效率和安全性。 综上所述,小模型人工智能在轻量级应用的前景十分广阔,将为各个领域的智能化应用带来更多可能性,并在嵌入式设备、移动设备、边缘计算等方面发挥重要作用。这将加速人工智能技术的普及和推广,为人们的生活带来更多便利和效益。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杨浦老苏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值