一、备注
最近我做leetcode的时候遇到了好多关于单调队列和单调栈的问题,在网上查阅了不少资料,又做了很多题目,慢慢将其弄懂,用博客将其记录下来,也算是激励自己刷题。
二、单调队列
单调队列在队列这种数据结构的基础上,维护了元素的有序性,即元素按照升序或降序排列。在入队列的时候,会判断当前元素与队尾元素是否符合顺序关系,如果符合,则直接入队列;如果不符合,则将队尾元素弹出,重复之前的判断,直至符合有序性或队列为空,而后让当前元素入队列。这个比较适合用双端队列实现,一般用list就可以了。
伪代码实现如下:
deque q;
add(element){
if(q.empty()||q.back<element){
q.push_back(element);
}
else{
while(!q.empty()&&q.back<element){
q.popback();
}
q.push_back(element);
}
}
单调队列可以利用自身的有序性,求解一些区间内的最大或最小问题。
例题
Leetcode https://leetcode.com/problems/sliding-window-maximum/
题目给定了一个数组,给定了区间大小,要求区间在滑动过程中计算区间内的最大值。
分析:我一开始用的是优先级队列,可以通过,后来做到有关单调队列的时候突然想到可以用单调队列来做,于是回头用单调队列解决了这个问题。
AC代码如下:
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
if(nums.length==0){
return new int[0];
}
LinkedList<Integer> list=new LinkedList<>();
int[] v=new int[nums.length];
int begin=0;
for(int i=0;i<nums.length;i++){
begin=Math.max(i-k+1,0);
while(!list.isEmpty()&&nums[list.getLast()]<nums[i]){
list.removeLast();
}
list.addLast(i);
while(!list.isEmpty()&&list.getFirst()<begin){
list.removeFirst();
}
v[i]=list.getFirst();
}
int[] res=new int[nums.length-k+1];
for(int i=k-1;i<nums.length;i++){
res[i-(k-1)]=nums[v[i]];
}
return res;
}
}
在这里要维护一个递减的队列,还要注意队列内元素的下标问题。基本思路就是在每次滑动窗口时,判断队尾元素与当前元素的大小,如果队尾元素比当前元素小,则弹出队尾元素,知道满足要求;如果队尾元素比当前元素大,则直接在队尾加入当前元素。为了方便,我们存的是元素在给定数组内的下标。之后,还要判断队首元素是否在给定窗体范围内,如果不在,则在队首弹出该元素直至符合要求。
三、单调栈
单调栈,顾名思义,就是从栈顶到栈底的元素具有一定单调性,比如单调递增或单调递减。
例题
Leetcode https://leetcode.com/problems/largest-rectangle-in-histogram/
题目给定了一个数组,表示当前直方图的柱的高度,要求该直方图中最大长方形的面积。
分析:之前我在CCF上遇到过这个题,当时用的是暴力,结果居然过了。后来又在leetcode上遇到了这道题,当时不太会这道题,于是上网看了大佬的解答,有一种解法使用了单调栈,正好可以拿来当成例题进行分析。要组成最大的矩形,如果当前是柱子的高度是递增的,则当前可以组成的矩形一定也可以在后面得到,因为后面柱子的高度比当前柱子大,当前能够组成的矩形一定比后面一个柱子可以组成的矩形要小。所以,我们维护一个单调递增栈,如果栈顶元素比当前元素小,则将当前元素压入栈;否则,则计算可以组成的矩形的最大值,并与历史记录的最大值进行比较。算法的时间复杂度是O(n).
AC代码如下:
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
int maxarea = 0;
stack<int> s;
heights.push_back(0);
for(int i=0;i<heights.size();i++){
if(s.empty()||heights[s.top()]<heights[i]){
s.push(i);
}
else{
int index=s.top();
s.pop();
maxarea=max(maxarea, heights[index]* (s.empty()? i:(i-s.top()-1)));
i--;
}
}
return maxarea;
}
};
这里我们存的依然是元素的下标,而不是元素的值,因为后面要计算宽度。