单调队列与单调栈

一、备注

  最近我做leetcode的时候遇到了好多关于单调队列和单调栈的问题,在网上查阅了不少资料,又做了很多题目,慢慢将其弄懂,用博客将其记录下来,也算是激励自己刷题。

二、单调队列

   单调队列在队列这种数据结构的基础上,维护了元素的有序性,即元素按照升序或降序排列。在入队列的时候,会判断当前元素与队尾元素是否符合顺序关系,如果符合,则直接入队列;如果不符合,则将队尾元素弹出,重复之前的判断,直至符合有序性或队列为空,而后让当前元素入队列。这个比较适合用双端队列实现,一般用list就可以了。
伪代码实现如下:

deque  q;
add(element){
	if(q.empty()||q.back<element){
		q.push_back(element);
	}
	else{
		while(!q.empty()&&q.back<element){
			q.popback();
		}
		q.push_back(element);
	}
}		

单调队列可以利用自身的有序性,求解一些区间内的最大或最小问题。

例题

Leetcode https://leetcode.com/problems/sliding-window-maximum/
题目给定了一个数组,给定了区间大小,要求区间在滑动过程中计算区间内的最大值。
分析:我一开始用的是优先级队列,可以通过,后来做到有关单调队列的时候突然想到可以用单调队列来做,于是回头用单调队列解决了这个问题。
AC代码如下:

class Solution {
    public int[] maxSlidingWindow(int[] nums, int k) {
        if(nums.length==0){
            return new int[0];
        }
        LinkedList<Integer> list=new LinkedList<>();
        int[] v=new int[nums.length];
        int begin=0;
        for(int i=0;i<nums.length;i++){
            begin=Math.max(i-k+1,0);
            while(!list.isEmpty()&&nums[list.getLast()]<nums[i]){
                list.removeLast();
            }
            list.addLast(i);
            while(!list.isEmpty()&&list.getFirst()<begin){
                list.removeFirst();
            }
            v[i]=list.getFirst();
        }
        int[] res=new int[nums.length-k+1];
        for(int i=k-1;i<nums.length;i++){
            res[i-(k-1)]=nums[v[i]];
        }
        return res;
    }
}

在这里要维护一个递减的队列,还要注意队列内元素的下标问题。基本思路就是在每次滑动窗口时,判断队尾元素与当前元素的大小,如果队尾元素比当前元素小,则弹出队尾元素,知道满足要求;如果队尾元素比当前元素大,则直接在队尾加入当前元素。为了方便,我们存的是元素在给定数组内的下标。之后,还要判断队首元素是否在给定窗体范围内,如果不在,则在队首弹出该元素直至符合要求。

三、单调栈

  单调栈,顾名思义,就是从栈顶到栈底的元素具有一定单调性,比如单调递增或单调递减。

例题

Leetcode https://leetcode.com/problems/largest-rectangle-in-histogram/

题目给定了一个数组,表示当前直方图的柱的高度,要求该直方图中最大长方形的面积。
分析:之前我在CCF上遇到过这个题,当时用的是暴力,结果居然过了。后来又在leetcode上遇到了这道题,当时不太会这道题,于是上网看了大佬的解答,有一种解法使用了单调栈,正好可以拿来当成例题进行分析。要组成最大的矩形,如果当前是柱子的高度是递增的,则当前可以组成的矩形一定也可以在后面得到,因为后面柱子的高度比当前柱子大,当前能够组成的矩形一定比后面一个柱子可以组成的矩形要小。所以,我们维护一个单调递增栈,如果栈顶元素比当前元素小,则将当前元素压入栈;否则,则计算可以组成的矩形的最大值,并与历史记录的最大值进行比较。算法的时间复杂度是O(n).
AC代码如下:

class Solution {
public:
    int largestRectangleArea(vector<int>& heights) {
		int maxarea = 0;
		stack<int> s;
        heights.push_back(0);
        for(int i=0;i<heights.size();i++){
            if(s.empty()||heights[s.top()]<heights[i]){
                s.push(i);
            }
            else{
                int index=s.top();
                s.pop();
                maxarea=max(maxarea, heights[index]* (s.empty()? i:(i-s.top()-1)));
                i--;
            }
            
        }
		return maxarea;
	}
};

这里我们存的依然是元素的下标,而不是元素的值,因为后面要计算宽度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值