概率统计与线代
Rauchy
不拘一格,自成一派
展开
-
牛顿法和拟牛顿法
前言 牛顿法和拟牛顿法是两种常用的优化方法,可以用来求解函数的根以及最优化。牛顿法 考虑无约束优化问题minx∈Rnf(x)\min_{x\in R^n} f(x)x∈Rnminf(x)x∗x^*x∗为目标函数的极小点。 假设f(x)具有二阶连续偏导数,若第k次迭代值为x(k)x^{(k)}x(k),则可将f(x)在x(k)x^{(k)}x(k)附近进行二阶泰勒展开:f(x...原创 2019-12-02 21:27:56 · 523 阅读 · 0 评论 -
矩阵运算及求导
基本运算 矩阵的常见运算如下:符号描述A−1A^{-1}A−1矩阵的逆det(A)\det(A)det(A)A的行列式Tr(A)Tr(A)Tr(A)矩阵的迹eig(A)eig(A)eig(A)矩阵的特征值ATA^TATA的转置∥A∥\|A\|∥A∥A的范数A∘BA\circ BA∘B哈达玛积A⊗BA\otimes ...原创 2019-11-19 10:40:07 · 7691 阅读 · 3 评论 -
统计概率学习(二)协方差、协方差矩阵
一、协方差 协方差的定义如下:数值E[X−E(x)][Y−E(Y)]E{[X-E(x)][Y-E(Y)]}E[X−E(x)][Y−E(Y)]为随机变量X与Y的协方差,记为Cov(X,Y),即Cov(X,Y)=E[X−E(x)][Y−E(Y)]Cov(X,Y)=E{[X-E(x)][Y-E(Y)]}Cov(X,Y)=E[X−E(x)][Y−E(Y)].对于D(X+Y),我们有D(X+Y)...原创 2019-07-17 10:30:55 · 2184 阅读 · 0 评论 -
信息熵,散度
信息熵交叉熵原创 2019-07-27 16:44:11 · 525 阅读 · 0 评论 -
法卡斯定理(Fakars' Lemma)
定义证明原创 2019-08-11 11:32:13 · 5230 阅读 · 1 评论 -
Borel Sets and Lebesgue Measure
不可数的样本空间 考虑这样一个实验:从区间Ω=[0,1]\Omega=[0,1]Ω=[0,1]中随机地选取一个实数,每一个数被取到的概率都是相等的。那么问题来了,单个实数被取到的概率是多少?有以下两种情况:取到单个实数的概率为正值ϵ\epsilonϵ,考虑集合A={1,2,...,1n}A=\{1,2,...,\frac{1}{n} \}A={1,2,...,n1},那么A中元素被取到的...原创 2019-08-24 14:43:18 · 1569 阅读 · 0 评论 -
多维高斯分布
简介 高斯分布是比较常见的概率分布,一维高斯分布如下:f(x)=12πσe−(x−μ)22σ2f(x)=\frac{1}{2\pi\sigma}e^{-{\frac{(x-\mu)^2} {2\sigma^2}}}f(x)=2πσ1e−2σ2(x−μ)2其中,σ\sigmaσ是方差,μ\muμ是平均值。但是常见的一般是多维高斯分布,我们可以由一维的高斯分布推广到多维的高斯分布。推导...原创 2019-09-24 10:07:57 · 6370 阅读 · 0 评论