1. KNN算法原理
k近邻方法是一种惰性学习算法,可以用于回归和分类,它的主要思想是投票机制,对于一个测试实例x, 我们在有标签的训练数据集上找到和最相近的k个数据,用他们的label进行投票,分类问题则进行表决投票,回归问题使用加权平均或者直接平均的方法。
1.1 K值选择
kNN中的k是一个超参数,需要我们进行指定,一般情况下这个k和数据有很大关系,都是交叉验证进行选择,但是建议使用交叉验证的时候,k∈[2,20],使用交叉验证得到一个很好的k值。需注意最好K的取值为奇数,防止出现平票而无法分类的情况。
k值还可以表示我们的模型复杂度,k值越小,意味着模型复杂度变大,更容易过拟合(用极少数的样例来绝对这个预测的结果,很容易产生偏见,这就是过拟合)。k值越大,学习的估计误差越小,但是学习的近似误差就会增大,容易造成欠拟合。
1.2 距离计算
样本之间的距离的计算,我们一般使用对于一般使用Lp距离进行计算。当p=1时候,称为曼哈顿距离(Manhattan distance),当p=2时候,称为欧氏距离(Euclidean distance),当p=∞时候,称为极大距离(infty distance), 表示各个坐标的距离最大值,另外也包含夹角余弦等方法。
一般采用欧式距离较多,但是文本分类则倾向于使用余弦来计算相似度。
对于两个向量 ( x i , x j ) (x_i,x_j) (xi,xj),一般使用 L p L_p Lp距离进行计算。 假设特征空间 X X X是n维实数向量空间 R n R^n Rn , 其中, x i , x j ∈ X x_i,x_j \in X xi,xj∈X,
x i = ( x i ( 1 ) , x i ( 2 ) , … , x i ( n ) ) x_{i}=\left(x_{i}^{(1)}, x_{i}^{(2)}, \ldots, x_{i}^{(n)}\right) xi=(xi(1),xi(2),…,xi(n)), x j = ( x j ( 1 ) , x j ( 2 ) , … , x j ( n ) ) x_{j}=