机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题

目录

1. K 近邻算法 API

1.1 Sklearn API介绍

1.2 鸢尾花分类示例代码

1.3 小结

2. K 值选择问题

2.1 K取不同值时带来的影响

2.2 如何确定合适的K值

2.3 GridSearchCV 的用法

2.4 小结

1. K 近邻算法 API


K近邻(K-Nearest Neighbors, KNN)算法作为一种基础且广泛应用的机器学习技术,其API的重要性不言而喻。它提供了快速、直接的方式来执行基于实例的学习,通过查找与待分类样本最邻近的K个样本,并基于这些邻近样本的类别来预测新样本的类别。KNN API的标准化和易用性,使得数据分析师和开发者能够轻松集成该算法到他们的项目中,无需深入算法细节,即可享受其强大的分类与回归能力。此外,KNN API通常还包含参数调整功能,如K值选择、距离度量方法等,使得用户可以根据具体需求优化算法性能,进一步凸显了其在机器学习实践中的不可或缺性。

学习目标

  1. 掌握sklearn中K近邻算法API的使用方法

1.1 Sklearn API介绍

本小节使用 scikit-learn 的 KNN API 来完成对鸢尾花数据集的预测.

  • API介绍

1.2 鸢尾花分类示例代码

鸢尾花数据集

鸢尾花Iris Dataset数据集是机器学习领域经典数据集,鸢尾花数据集包含了150条鸢尾花信息,每50条取自三个鸢尾花中之一:Versicolour、Setosa和Virginica

每个花的特征用如下属性描述:

示例代码:

from sklearn.datasets import load_iris
from sklearn.prepr
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值