7-19 调度问题 (40 分)
假设有n(n<=20)个任务由k(k<=20)个可并行工作的机器完成。完成任务i需要的时间为ti。 试设计一个算法,对任意给定的整数n和k,以及完成任务i 需要的时间为ti ,i=1~n。计算完成这n个任务的最佳调度,使得完成全部任务的时间最早。
输入格式:
输入数据的第一行有2 个正整数n和k。第2 行的n个正整数是完成n个任务需要的时间。
输出格式:
将计算出的完成全部任务的最早时间输出到屏幕。
输入样例:
在这里给出一组输入。例如:
7 3
2 14 4 16 6 5 3
输出样例:
在这里给出相应的输出。例如:
17
#include <bits/stdc++.h>
#define N 100
using namespace std;
int n,k;//n表示任务数 k表示机器数
int arr_task[N];//用于保存每个任务的执行时间
int mt[N];//用于保存每个机器执行完任务需要的时间,默认是0
int bestTime=100000;//最优值
int getMaxTime(int mt[]){//获取这三个机器的最大需要运行时间,也就是看看这三台什么时候都结束
int maxTime=mt[0];
for(int i=1; i<k; i++){
if(maxTime<mt[i]){
maxTime=mt[i];
}
}
return maxTime;
}
void Backtrack(int task){
if(task==n){//如果是从1开始的,则应该是>n
int currentTime=getMaxTime(mt);
if( bestTime>currentTime){
bestTime=currentTime;
}
}
else{
for(int i=0; i<k; i++){//对每个机器进行遍历
mt[i]+=arr_task[task];
if(mt[i]<bestTime){
Backtrack(task+1);
}
mt[i]-=arr_task[task];
}
}
}
int main(){
memset(mt,0,sizeof(mt));
cin>>n>>k;
for(int i=0; i<n; i++){
cin>>arr_task[i];
}
Backtrack(0);
cout << bestTime << endl;
return 0;
}