7-19 调度问题 (40 分)

43 篇文章 38 订阅

7-19 调度问题 (40 分)
假设有n(n<=20)个任务由k(k<=20)个可并行工作的机器完成。完成任务i需要的时间为ti。 试设计一个算法,对任意给定的整数n和k,以及完成任务i 需要的时间为ti ,i=1~n。计算完成这n个任务的最佳调度,使得完成全部任务的时间最早。

输入格式:
输入数据的第一行有2 个正整数n和k。第2 行的n个正整数是完成n个任务需要的时间。

输出格式:
将计算出的完成全部任务的最早时间输出到屏幕。

输入样例:
在这里给出一组输入。例如:

7 3
2 14 4 16 6 5 3

输出样例:
在这里给出相应的输出。例如:

17

#include <bits/stdc++.h>
#define N 100
using namespace std;
int n,k;//n表示任务数 k表示机器数
int arr_task[N];//用于保存每个任务的执行时间
int mt[N];//用于保存每个机器执行完任务需要的时间,默认是0
int bestTime=100000;//最优值

int getMaxTime(int mt[]){//获取这三个机器的最大需要运行时间,也就是看看这三台什么时候都结束
    int maxTime=mt[0];
    for(int i=1; i<k; i++){
        if(maxTime<mt[i]){
            maxTime=mt[i];
        }
    }
    return maxTime;
}
void Backtrack(int task){   
    if(task==n){//如果是从1开始的,则应该是>n
        int currentTime=getMaxTime(mt);
        if( bestTime>currentTime){
            bestTime=currentTime;
        }
    }
    else{
        for(int i=0; i<k; i++){//对每个机器进行遍历
            mt[i]+=arr_task[task];
            if(mt[i]<bestTime){
                Backtrack(task+1);
            }
            mt[i]-=arr_task[task];
        }
    }
}
int main(){
    memset(mt,0,sizeof(mt));
    cin>>n>>k;
    for(int i=0; i<n; i++){
        cin>>arr_task[i];
    }
    Backtrack(0);
    cout << bestTime << endl;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

关迪迪屁事.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值