python识别ovito中的位错,并统计长度,改进版提升运行速度

通过OVITO的Python API进行位错分析,指导如何在Python中加载原子尺度模拟数据,应用位错分析修饰器并设置参数。针对原代码运行速度慢的问题,提供了改进版以提高运行效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

要在Python中识别OVITO(The Object-Oriented Visualization Toolkit)中的位错,您可以使用OVITO的Python API来进行位错分析。OVITO是一个科学可视化和分析软件,用于原子尺度的模拟数据,如分子动力学或蒙特卡罗模拟。其中,位错分析是材料科学研究中的一个重要方面。

以下是一个基本的步骤指南,用于在Python中使用OVITO来识别位错:

  1. 安装OVITO: 首先,确保您的系统中安装了OVITO。OVITO可以从其官方网站下载。

  2. 导入OVITO模块: 在您的Python脚本中,导入必要的OVITO模块。主要是

    from ovito.io import * 和 from ovito.pipeline import *
  3. 加载模拟数据: 使用OVITO的import_file()函数加载您的模拟数据,这些数据可能是原子坐标文件,如LAMMPS的输出文件。

  4. 应用位错分析修饰器: OVITO提供了位错分析的修饰器(Dislocation Analysis Modifier)。这个修饰器可以识别和分析样品中的位错。

  5. 设置参数: 根据您的样本和需求,设置位错分析的参数。例如,您可能需要指定晶体结构类型、位错线的搜索参数等。

  6. 执行分析: 应用修饰器并运行流水线(pipeline),执行位错分析。

  7. 结果提取和可视化: 分析完成后,您可以提取位错数据,如位错线的位置、类型等。OVITO还支持可视化这些数据,以便更直观地理解位错的分布和性质。

  8. 保存和输出: 最后,您可以将分析结果保存为文件,或直接在脚本中输出。

from ovito.io import import_file
from ovito.modifiers import DislocationAnalysisModifier
from ovito.data import DislocationNetwork
import time

pipeline = import_file("movedown.xyz")

print("total_num_frames: %f" % pipeline.source.num_frames)

for frame in range(pipeline.source.num_frames):

        steps = (frame)
        print("step: %s" % steps)

        modifier = DislocationAnalysisModifier(trial_circuit_length = 14,circuit_stretchability = 9)
 
        modifier.input_crystal_structure = DislocationAnalysisModifier.Lattice.BCC
  
        pipeline.modifiers.append(modifier)

        time_start = time.perf_counter()
  
        data = pipeline.compute(frame)

        time_end = time.perf_counter()

        print("ElapsedTime : {} s".format(time_end - time_start))

    
        total_line_length = data.attributes['DislocationAnalysis.total_line_length']


        print ("dislocation_length: %f" % total_line_length)
     

        f1 = open('kuaidowntotal_line_length.txt','a+')
        f1.write(str(steps))
        f1.write("  ")
        f1.write(str(total_line_length))
        f1.write("\n")
        f1.close()
       

这个代码能准确识别,但是运行速度太慢,太耗时,为此可以运用改进版本,提升运行效率,话不多说,代码如下:

import ovito
from ovito.io import import_file
from ovito.modifiers import DislocationAnalysisModifier
import numpy as np
import time

# 假设所有XYZ文件的路径存储在一个列表中
file_paths = ["movedown.xyz"]

# 结果存储在一个列表中,而不是每次迭代就写入文件
results = []

# 循环处理每个文件
for file_path in file_paths:
    start_time = time.time()
    
    # 导入XYZ文件
    pipeline = import_file(file_path, multiple_frames=True)

    # 添加位错分析修饰符,并设置晶体结构为 BCC
    mod = DislocationAnalysisModifier(trial_circuit_length = 14,circuit_stretchability = 9)
    mod.input_crystal_structure = DislocationAnalysisModifier.Lattice.BCC
    pipeline.modifiers.append(mod)

    # 用于存储每个时间步的位错长度
    dislocation_lengths = []

    # 处理每个时间步
    for frame in range(pipeline.source.num_frames):
        data = pipeline.compute(frame)

        # 获取该时间步的位错长度
        length = sum(segment.length for segment in data.dislocations.segments)
        dislocation_lengths.append(length)

    # 记录结果和处理时间
    results.append((file_path, dislocation_lengths, time.time() - start_time))

# 将所有结果写入一个文件
with open('results.txt', 'w') as file:
    for file_path, lengths, duration in results:
        file.write(f"{file_path}:\n")
        for frame, length in enumerate(lengths):
            file.write(f"  Time Step {frame}: Length={length}\n")
        file.write(f"Total Time={duration}s\n")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wcget123

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值