617. Merge Two Binary Trees

617. Merge Two Binary Trees

  • Total Accepted: 5554
  • Total Submissions: 7673
  • Difficulty: Easy
  • Contributors:jiatang

Given two binary trees and imagine that when you put one of them to cover the other, some nodes of the two trees are overlapped while the others are not.

You need to merge them into a new binary tree. The merge rule is that if two nodes overlap, then sum node values up as the new value of the merged node. Otherwise, the NOT null node will be used as the node of new tree.

Example 1:

Input: 
	Tree 1                     Tree 2                  
          1                         2                             
         / \                       / \                            
        3   2                     1   3                        
       /                           \   \                      
      5                             4   7                  
Output: 
Merged tree:
	     3
	    / \
	   4   5
	  / \   \ 
	 5   4   7

Note: The merging process must start from the root nodes of both trees.

题意:

合并两个二叉树,同一个节点的值相加,如果节点都没有为空

算法思路:

用到递归的方法,用二叉树前序遍历的方法,依次求出值,最后返回根节点。

代码:

package easy;

public class MergeTwoBinaryTrees {
	
	 public TreeNode mergeTrees(TreeNode t1, TreeNode t2) {
	        if(t1==null && t2==null){
	        	
	        	return null;
	        }
	        if(t1==null && t2!=null){
	        	
	        	return t2;
	        }
	        if(t1!=null && t2==null){
	        	
	        	return t1;
	        }
	        if(t1!=null && t2!=null){
	        	t1.val += t2.val;
	        	t1.left = mergeTrees(t1.left, t2.left);
	        	t1.right = mergeTrees(t1.right, t2.right);
	        }
	        
	        return t1;
	    }

	
	public class TreeNode{
		int val;
		TreeNode left;
		TreeNode right;
		
		TreeNode(int x){
			val = x;
		}
	}
}







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值