题目描述
小明正在玩游戏,他控制的角色正面临着幽谷的考验——
幽谷周围瘴气弥漫,静的可怕,隐约可见地上堆满了骷髅。由于此处长年不见天日,导致空气中布满了毒素,一旦吸入体内,便会全身溃烂而死。
幸好小明早有防备,提前备好了解药材料(各种浓度的万能药水)。现在只需按照配置成不同比例的浓度。
现已知小明随身携带有n种浓度的万能药水,体积V都相同,浓度则分别为Pi%。并且知道,针对当时幽谷的瘴气情况,只需选择部分或者全部的万能药水,然后配置出浓度不大于 W%的药水即可解毒。
现在的问题是:如何配置此药,能得到最大体积的当前可用的解药呢?
特别说明:由于幽谷内设备的限制,只允许把一种已有的药全部混入另一种之中(即:不能出现对一种药只取它的一部分这样的操作)。
输入
输入数据的第一行是一个整数C,表示测试数据的组数;
每组测试数据包含2行,首先一行给出三个正整数n,V,W(1<=n,V,W<=100);
接着一行是n个整数,表示n种药水的浓度Pi%(1<=Pi<=100)。
输出
对于每组测试数据,请输出一个整数和一个浮点数;
其中整数表示解药的最大体积,浮点数表示解药的浓度(四舍五入保留2位小数);
如果不能配出满足要求的的解药,则请输出0 0.00。
样例输入
2 1 35 68 1 2 79 25 59 63
样例输出
35 0.01
0 0.00
思路
贪心算法,
先对浓度递增排序,两个浓度的药水配置在一起后,得到的浓度一定是介于配置之前的两种药水之间。
题目要求满足条件的最大值体积,因此只要满足配置后浓度小于等于W%,那么就可以一直配置下去,直到不能配置为止。
#include<bits/stdc++.h>
using namespace std;
int main()
{
int c;
while(cin >> c)
{
int n, V, W;
for(int i=0; i<c; ++i)
{
cin >> n>> V >> W;
vector<int>pi(n);
for(int j=0; j<n; ++j)
{
cin >> pi[j];
}
sort(pi.begin(), pi.end());
int sumv = 0;
double p = 0;
for(int j=0; j<n; ++j)
{
double temp = (p * sumv + pi[j]*V)/(sumv + V) ;
if(temp <= W)
{
sumv += V;
p = temp ;
}
else
break;
}
printf("%d %.2f\n", sumv, p/100);
}
}
return 0;
}