tensorflow 学习笔记(3)-basic_example

logistic_regression

# -*- coding: utf-8 -*-
"""
Created on Mon Jun 19 20:59:46 2017
@author: wuchengzhu
"""
from __future__ import print_function
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST_data/", one_hot = True)

learning_rate = 0.01
training_epochs = 25
batch_size = 100
display_step = 1

x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, 10])

W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))

pred  = tf.nn.softmax(tf.matmul(x, W) + b)

cross_entropy =  tf.reduce_mean(- tf.reduce_sum(y * tf.log(pred)) ) 

optimizer  = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy)

init  = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    for epoch in range(training_epochs):
        avg_cost = 0.
        total_batch = int(mnist.train.num_examples / batch_size)
        for i in range(total_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            _, c = sess.run([optimizer, cross_entropy], feed_dict = {x: batch_xs, y: batch_ys})
            avg_cost += c / total_batch
        if (epoch + 1) % display_step == 0:
            print("Epoch: ",'%04d' % (epoch + 1), "cost = ","{:.9f}".format(avg_cost))
    print("Optimization Finished!")
    correctt_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
    accuracy = tf.reduce_mean(tf.cast(correctt_prediction, tf.float32))
    print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))

运行的结果截图,运行在TensorFlow + python3.5环境下,利用mnist数据集进行练习。使用softmax逻辑回归,损失函数用交叉熵。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值