第四章 分治法例题

本文探讨了如何使用分治法解决最大子段和问题,通过实例展示了序列(-20, 11, -4, 13, -5, -2)的最大子段和计算,总结了三种关键思路:前缀序列、后缀序列和包含某个元素的最大子段和。" 107155443,8768420,使用谷歌身份验证器实现多因素身份验证,"['安全', 'IBM DataPower', '身份验证', '移动开发', 'API保护']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

例题(最大子段和问题)

给定由n个整数组成的序列(a1, a2, …, an),最大子段和问题要求该序列形如        
的最大值(1≤i≤j≤n),当序列中所有整数均为负整数时,其最大子段和为0。例如,序列(-20, 11, -4, 13, -5, -2)的
最大子段和为

 

思路:

① a1, …, an的最大子段和=a1, …,a      的最大子段和;
② a1, …, an的最大子段和=a     +1, …, an的最大子段和;
③ a1, …, an的最大子段和=             ,且

int MaxSum(int a[ ], int left, int right)
   {
       sum=0;
       if (left= =right) {      //如果序列长度为1ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值