A Shade of Moonlight
题目描述
传送门:http://codeforces.com/contest/989/problem/D
题解
对着原题推了半天都是错的。。
考虑换一个思路,原题说的是两个人的速度同时加w,我们转换成月亮会进行移动。
月亮以每个时刻从中间向两侧移动最多W个单位的速度移动。
我们可以把时间放在纵坐标,把位置放在横坐标,画出如题解中的那样一张图。
对于两个人,如果它们的交集在黄色区域内,那么就能够在某一时刻同时覆盖月球。
对于这张图,显然我们只需要考虑相交的那个矩形的最上面的那个点。
相遇时间,y=(X2+L-X1)/2
相遇位置,x=(X1+X2+L)/2
在黄色区域,所以y>=x/w 且 y>=-x/w
所以 X2+L-X1>|X1+X2+L|/w
只要满足以上条件即可。
所以我们把向右走的位置和向左走的位置分开,分别排序,显然从左往右满足单调性。
然后就单调扫一遍就好了。
代码
#include<bits/stdc++.h>
#define ll long long
#define N 100005
using namespace std;
int n,L,W,A[N],B[N],t1,t2;ll ans;
int main()
{
int x,y;
scanf("%d%d%d",&n,&L,&W);
for(int i=1;i<=n;i++)
{
scanf("%d%d",&x,&y);
if(y==1)A[++t1]=x;
else B[++t2]=x;
}
sort(A+1,A+t1+1);sort(B+1,B+t2+1);
for(int i=1,j=1;i<=t1;i++)
{
while(j<=t2&&abs(A[i]+B[j]+L)>=1ll*W*(B[j]-A[i]+L))j++;
ans+=t2-j+1;
}
printf("%I64d\n",ans);
return 0;
}