题目描述
给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, …)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。
示例 1:
输入: n = 12
输出: 3
解释: 12 = 4 + 4 + 4.
示例 2:
输入: n = 13
输出: 2
解释: 13 = 4 + 9.
class Solution {
public int numSquares(int n) {
int[] dp = new int[n + 1]; // 默认初始化值都为0
for (int i = 1; i <= n; i++) {
dp[i] = i; // 最坏的情况就是每次+1
for (int j = 1; i - j * j >= 0; j++) {
dp[i] = Math.min(dp[i], dp[i - j * j] + 1); // 动态转移方程
}
}
return dp[n];
}
}
解题思路:
首先考虑最坏的情况,每个数都由1的平方构成,那我们可以定义一个长为n+1的数组,先初始化每个数都为本身。然后再考虑优化我们的个数,用i来遍历我们的数组,再定义一个j,j从1开始,我们用i来减去j的平方,如果结果大于等于0,证明j还可以继续增加,当前的i也可以由更大的数的平方构成,而每次更新我们都可以去比较当前的个数和